cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301555 Expansion of Product_{k>=1} ((1 + x^k)/(1 - x^k))^(sigma(k)).

Original entry on oeis.org

1, 2, 8, 22, 62, 154, 392, 914, 2136, 4776, 10544, 22626, 47982, 99538, 204100, 411714, 821130, 1616170, 3148812, 6066338, 11579954, 21893214, 41045780, 76306030, 140783060, 257789064, 468783092, 846697340, 1519599658, 2710476106, 4806507720, 8475250510
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 23 2018

Keywords

Comments

Convolution of A061256 and A192065.

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[((1+x^k)/(1-x^k))^DivisorSigma[1, k], {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp((3*Pi)^(2/3) * (7*Zeta(3))^(1/3) * n^(2/3) / 2^(5/3) - 3^(1/3) * Pi^(4/3) * n^(1/3) / (2^(7/3) * (7*Zeta(3))^(1/3)) - 1/24 - Pi^2 / (224 * Zeta(3))) * A^(1/2) * (7*Zeta(3))^(11/72) / (2^(13/18) * 3^(47/72) * Pi^(11/72) * n^(47/72)), where A is the Glaisher-Kinkelin constant A074962.
G.f.: Product_{i>=1, j>=1} ((1 + x^(i*j))/(1 - x^(i*j)))^i. - Ilya Gutkovskiy, Aug 29 2018