cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301595 Number of thrice-partitions of n.

Original entry on oeis.org

1, 1, 4, 10, 34, 80, 254, 604, 1785, 4370, 11986, 29286, 80355, 193137, 505952, 1239348, 3181970, 7686199, 19520906, 46931241, 117334784, 282021070, 693721166, 1659075192, 4063164983, 9651686516, 23347635094, 55405326513, 133021397071, 313842472333, 749299686508
Offset: 0

Views

Author

Gus Wiseman, Mar 24 2018

Keywords

Comments

A thrice-partition of n is a choice of a twice-partition of each part in a partition of n. Thrice-partitions correspond to intervals in the lattice form of the multiorder of integer partitions.

Examples

			The a(3) = 10 thrice-partitions:
  ((3)), ((21)), ((111)), ((2)(1)), ((11)(1)), ((1)(1)(1)),
  ((2))((1)), ((11))((1)), ((1)(1))((1)),
  ((1))((1))((1)).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0 or k=0 or i=1,
          1, b(n, i-1, k)+b(i$2, k-1)*b(n-i, min(n-i, i), k))
        end:
    a:= n-> b(n$2, 3):
    seq(a(n), n=0..35);  # Alois P. Heinz, Jan 25 2019
  • Mathematica
    twie[n_]:=Sum[Times@@PartitionsP/@ptn,{ptn,IntegerPartitions[n]}];
    thrie[n_]:=Sum[Times@@twie/@ptn,{ptn,IntegerPartitions[n]}];
    Array[thrie,30]
    (* Second program: *)
    b[n_, i_, k_] := b[n, i, k] = If[n == 0 || k == 0 || i == 1,
         1, b[n, i - 1, k] + b[i, i, k - 1]*b[n - i, Min[n - i, i], k]];
    a[n_] := b[n, n, 3];
    a /@ Range[0, 35] (* Jean-François Alcover, May 19 2021, after Alois P. Heinz *)

Formula

O.g.f.: Product_{n > 0} 1/(1 - A063834(n) x^n).

Extensions

a(0)=1 prepended by Alois P. Heinz, Jan 25 2019