A301595 Number of thrice-partitions of n.
1, 1, 4, 10, 34, 80, 254, 604, 1785, 4370, 11986, 29286, 80355, 193137, 505952, 1239348, 3181970, 7686199, 19520906, 46931241, 117334784, 282021070, 693721166, 1659075192, 4063164983, 9651686516, 23347635094, 55405326513, 133021397071, 313842472333, 749299686508
Offset: 0
Keywords
Examples
The a(3) = 10 thrice-partitions: ((3)), ((21)), ((111)), ((2)(1)), ((11)(1)), ((1)(1)(1)), ((2))((1)), ((11))((1)), ((1)(1))((1)), ((1))((1))((1)).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..3244
- Gus Wiseman, The a(4) = 34 thrice-partitions of 4.
Crossrefs
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n=0 or k=0 or i=1, 1, b(n, i-1, k)+b(i$2, k-1)*b(n-i, min(n-i, i), k)) end: a:= n-> b(n$2, 3): seq(a(n), n=0..35); # Alois P. Heinz, Jan 25 2019
-
Mathematica
twie[n_]:=Sum[Times@@PartitionsP/@ptn,{ptn,IntegerPartitions[n]}]; thrie[n_]:=Sum[Times@@twie/@ptn,{ptn,IntegerPartitions[n]}]; Array[thrie,30] (* Second program: *) b[n_, i_, k_] := b[n, i, k] = If[n == 0 || k == 0 || i == 1, 1, b[n, i - 1, k] + b[i, i, k - 1]*b[n - i, Min[n - i, i], k]]; a[n_] := b[n, n, 3]; a /@ Range[0, 35] (* Jean-François Alcover, May 19 2021, after Alois P. Heinz *)
Formula
O.g.f.: Product_{n > 0} 1/(1 - A063834(n) x^n).
Extensions
a(0)=1 prepended by Alois P. Heinz, Jan 25 2019
Comments