cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301621 Numbers not divisible by 2, 3 or 5 (A007775) with digital root 2.

Original entry on oeis.org

11, 29, 47, 83, 101, 119, 137, 173, 191, 209, 227, 263, 281, 299, 317, 353, 371, 389, 407, 443, 461, 479, 497, 533, 551, 569, 587, 623, 641, 659, 677, 713, 731, 749, 767, 803, 821, 839, 857, 893, 911, 929, 947, 983, 1001, 1019, 1037, 1073, 1091, 1109
Offset: 1

Views

Author

Gary Croft, Mar 24 2018

Keywords

Comments

Numbers congruent to 11, 29, 47, or 83 mod 90 with additive sum sequence 11 { + 18 + 18 + 36 + 18} {repeat ...}. Includes all prime numbers greater than 5 with digital root 2.

Examples

			11+18=29; 29+18=47; 47+36=83; 83+18=101; 101+18=119.
		

Crossrefs

Intersection of A007775 and A017185.

Programs

  • GAP
    Filtered(Filtered([1..1200],n->n mod 2 <> 0 and n mod 3 <> 0 and n mod 5 <> 0),i->i-9*Int((i-1)/9)=2); # Muniru A Asiru, Apr 22 2018
  • Mathematica
    Flatten[Table[90n - {79, 61, 43, 7}, {n, 30}]] (* Alonso del Arte, Mar 29 2018 *)
  • PARI
    Vec(x*(11 + 18*x + 18*x^2 + 36*x^3 + 7*x^4) / ((1 - x)^2*(1 + x)*(1 + x^2)) + O(x^60)) \\ Colin Barker, Mar 26 2018
    

Formula

n == {11, 29, 47, 83} mod 90.
From Colin Barker, Mar 26 2018: (Start)
G.f.: x*(11 + 18*x + 18*x^2 + 36*x^3 + 7*x^4) / ((1 - x)^2*(1 + x)*(1 + x^2)).
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
(End)