A301627 G.f. A(x) satisfies: A(x) = 1/(1 - x*A(x)/(1 - x^2*A(x)^2/(1 - x^3*A(x)^3/(1 - x^4*A(x)^4/(1 - ...))))), a continued fraction.
1, 1, 2, 6, 20, 71, 265, 1024, 4059, 16414, 67451, 280856, 1182379, 5024361, 21522055, 92833874, 402879747, 1757852317, 7706728006, 33932931008, 149986338830, 665276977574, 2960306454110, 13210976195068, 59114318997648, 265166069469324, 1192145264317628, 5370983954821322
Offset: 0
Keywords
Examples
G.f. A(x) = 1 + x + 2*x^2 + 6*x^3 + 20*x^4 + 71*x^5 + 265*x^6 + 1024*x^7 + 4059*x^8 + 16414*x^9 + 67451*x^10 + ... log(A(x)) = x + 3*x^2/2 + 13*x^3/3 + 55*x^4/4 + 236*x^5/5 + 1035*x^6/6 + 4593*x^7/7 + 20551*x^8/8 + ... + A291653(n)*x^n/n + ...
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..500
- Eric Weisstein's World of Mathematics, Rogers-Ramanujan Continued Fraction
Formula
a(n) ~ c * d^n / n^(3/2), where d = 4.760595370947474723688065553003203505424287110594102605580439495640678... and c = 0.395762805862214496152624315213041270339036... - Vaclav Kotesovec, Apr 08 2018