cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A301629 G.f. A(x) satisfies: A(x) = 1/(1 + x*A(x)/(1 + x^2*A(x)^2/(1 + x^3*A(x)^3/(1 + x^4*A(x)^4/(1 + ...))))), a continued fraction.

Original entry on oeis.org

1, -1, 2, -4, 8, -15, 23, -14, -95, 616, -2597, 9280, -29971, 89283, -245617, 614122, -1330205, 2121789, -134318, -18870272, 111955244, -481559262, 1783749762, -5976975892, 18406561660, -52025500982, 132347403714, -285820317372, 421120353772, 271625450178, -5772145145591
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 24 2018

Keywords

Examples

			G.f. A(x) = 1 - x + 2*x^2 - 4*x^3 + 8*x^4 - 15*x^5 + 23*x^6 - 14*x^7 - 95*x^8 + 616*x^9 - 2597*x^10 + ...
log(A(x)) = -x + 3*x^2/2 - 7*x^3/3 + 15*x^4/4 - 26*x^5/5 + 15*x^6/6 + 153*x^7/7 - 1049*x^8/8 + ... + A291651(n)*x^n/n + ...
		

Crossrefs

A301832 G.f. A(x) satisfies: A(x) = 1/(1 - x*A(x)/(1 - x^3*A(x)^3/(1 - x^5*A(x)^5/(1 - x^7*A(x)^7/(1 - ...))))), a continued fraction.

Original entry on oeis.org

1, 1, 2, 5, 15, 49, 168, 595, 2160, 7998, 30095, 114751, 442402, 1721636, 6753869, 26680262, 106042264, 423750562, 1701476738, 6861334966, 27776206851, 112839216109, 459867381701, 1879624039171, 7703187691979, 31647457638073, 130314986803631, 537730217342715, 2223228743506792
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 27 2018

Keywords

Examples

			G.f. A(x) = 1 + x + 2*x^2 + 5*x^3 + 15*x^4 + 49*x^5 + 168*x^6 + 595*x^7 + 2160*x^8 + 7998*x^9 + 30095*x^10 + ...
		

Crossrefs

Formula

a(n) = [x^n] (Sum_{k>=0} A143951(k)*x^k)^(n+1)/(n + 1).
a(n) ~ c * d^n / n^(3/2), where d = 4.36034166192381738574769007441081546251391... and c = 0.42401561796424536417811444539653002307... - Vaclav Kotesovec, Nov 04 2021
Showing 1-2 of 2 results.