A301628 Numbers not divisible by 2, 3 or 5 (A007775) with digital root 7.
7, 43, 61, 79, 97, 133, 151, 169, 187, 223, 241, 259, 277, 313, 331, 349, 367, 403, 421, 439, 457, 493, 511, 529, 547, 583, 601, 619, 637, 673, 691, 709, 727, 763, 781, 799, 817, 853, 871, 889, 907, 943, 961, 979, 997, 1033, 1051, 1069, 1087, 1123
Offset: 1
Examples
7+36=43; 43+18=61; 61+18=79; 79+18=97; 97+36=133.
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
Programs
-
GAP
Filtered(Filtered([1..1200],n->n mod 2 <> 0 and n mod 3 <> 0 and n mod 5 <> 0),i->i-9*Int((i-1)/9)=7); # Muniru A Asiru, Apr 22 2018
-
PARI
Vec(x*(7 + 36*x + 18*x^2 + 18*x^3 + 11*x^4) / ((1 - x)^2*(1 + x)*(1 + x^2)) + O(x^40)) \\ Colin Barker, Sep 21 2019
Formula
Numbers == {7, 43, 61, 79} mod 90.
From Colin Barker, Sep 21 2019: (Start)
G.f.: x*(7 + 36*x + 18*x^2 + 18*x^3 + 11*x^4) / ((1 - x)^2*(1 + x)*(1 + x^2)).
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
(End)
Comments