cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301628 Numbers not divisible by 2, 3 or 5 (A007775) with digital root 7.

Original entry on oeis.org

7, 43, 61, 79, 97, 133, 151, 169, 187, 223, 241, 259, 277, 313, 331, 349, 367, 403, 421, 439, 457, 493, 511, 529, 547, 583, 601, 619, 637, 673, 691, 709, 727, 763, 781, 799, 817, 853, 871, 889, 907, 943, 961, 979, 997, 1033, 1051, 1069, 1087, 1123
Offset: 1

Views

Author

Gary Croft, Mar 24 2018

Keywords

Comments

Numbers == {7, 43, 61, 79} mod 90 with additive sum sequence 7{+36+18+18+18} {repeat ...}. Includes all prime numbers > 5 with digital root 7.

Examples

			7+36=43; 43+18=61; 61+18=79; 79+18=97; 97+36=133.
		

Crossrefs

Intersection of A007775 and A017245.

Programs

  • GAP
    Filtered(Filtered([1..1200],n->n mod 2 <> 0 and n mod 3 <> 0 and n mod 5 <> 0),i->i-9*Int((i-1)/9)=7); # Muniru A Asiru, Apr 22 2018
    
  • PARI
    Vec(x*(7 + 36*x + 18*x^2 + 18*x^3 + 11*x^4) / ((1 - x)^2*(1 + x)*(1 + x^2)) + O(x^40)) \\ Colin Barker, Sep 21 2019

Formula

Numbers == {7, 43, 61, 79} mod 90.
From Colin Barker, Sep 21 2019: (Start)
G.f.: x*(7 + 36*x + 18*x^2 + 18*x^3 + 11*x^4) / ((1 - x)^2*(1 + x)*(1 + x^2)).
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
(End)