cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301695 Expansion of (1 + 5*x + 4*x^2 + 5*x^3 + x^4)/((1 - x)^2*(1 - x^3)).

Original entry on oeis.org

1, 7, 17, 33, 55, 81, 113, 151, 193, 241, 295, 353, 417, 487, 561, 641, 727, 817, 913, 1015, 1121, 1233, 1351, 1473, 1601, 1735, 1873, 2017, 2167, 2321, 2481, 2647, 2817, 2993, 3175, 3361, 3553, 3751, 3953, 4161, 4375, 4593, 4817, 5047, 5281, 5521, 5767, 6017, 6273
Offset: 0

Views

Author

N. J. A. Sloane, Mar 25 2018

Keywords

Crossrefs

Partial sums of A301694.

Programs

  • Magma
    [(8*n*(n+1)-2*((n-1)^2 mod 3)+5)/3: n in [0..50]]; // Bruno Berselli, Mar 26 2018
    
  • Mathematica
    Table[(8 n (n + 1) -  2 ((n-1)^2 mod 3) + 5)/3, {n, 0, 40}] (* Bruno Berselli, Mar 26 2018 *)
  • PARI
    Vec((1 + 5*x + 4*x^2 + 5*x^3 + x^4)/((1 - x)^2*(1 - x^3)) + O(x^50)) \\ Felix Fröhlich, Mar 26 2018

Formula

G.f.: (1 + 5*x + 4*x^2 + 5*x^3 + x^4)/((1 - x)^2*(1 - x^3)).
a(n) = (8*n*(n + 1) - 2*((n - 1)^2 mod 3) + 5)/3. Therefore: a(3*k + r) = 8*k*(3*k + 2*r + 1) + 8*r + (-1)^r. Example: a(13) = a(3*4+1) = 8*4*(3*4 + 2*1 + 1) + 8*1 + (-1)^1 = 487. - Bruno Berselli, Mar 26 2018