cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301699 Generating function = g(g(x)), where g(x) = g.f. of Jacobsthal numbers A001045.

Original entry on oeis.org

0, 1, 2, 8, 26, 94, 330, 1178, 4186, 14914, 53098, 189122, 673530, 2398834, 8543498, 30428162, 108371354, 385970386, 1374653610, 4895901602, 17437011514, 62102837746, 221182535242, 787753281218, 2805624912090, 9992381298706, 35588393716202
Offset: 0

Views

Author

N. J. A. Sloane, Mar 29 2018

Keywords

Comments

The Dira (2017) article describes this as the self-convolution of A001045, but it is really the self-composition. - N. J. A. Sloane, Apr 07 2019, following a suggestion from Ilya Gutkovskiy. Note that A073371 is the convolution of A001045(n+1) with itself, with g.f.: g(x)^2/x^2, where g(x) = g.f. of A001045.
The Dira (2017) article contains on pages 851 and 852 several other sequences that could be added to the OEIS.

Crossrefs

Programs

  • Magma
    I:=[0,1,2,8]; [n le 4 select I[n] else 3*Self(n-1)+4*Self(n-2)-6*Self(n-3)-4*Self(n-4): n in [1..30]]; // Vincenzo Librandi, Mar 30 2018
  • Maple
    f:=proc(a,b) local t1;
    t1:=(x-a*x^2-b*x^3)/(1-3*a*x+(2*a^2-3*b)*x^2+3*a*b*x^3 + b^2*x^4);
    lprint(t1);
    series(t1,x,50);
    seriestolist(%);
    end;
    f(1,2);
  • Mathematica
    CoefficientList[Series[(-2 x^3 - x^2 + x) / (4 x^4 + 6 x^3 - 4 x^2 - 3 x + 1), {x, 0, 33}], x] (* Vincenzo Librandi, Mar 30 2018 *)

Formula

G.f.: (-2*x^3-x^2+x)/(4*x^4+6*x^3-4*x^2-3*x+1).
a(n) = 3*a(n-1) + 4*a(n-2) - 6*a(n-3) - 4*a(n-4). - Vincenzo Librandi, Mar 30 2018