cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301711 Partial sums of A301710.

Original entry on oeis.org

1, 6, 17, 34, 56, 83, 116, 155, 199, 248, 303, 364, 430, 501, 578, 661, 749, 842, 941, 1046, 1156, 1271, 1392, 1519, 1651, 1788, 1931, 2080, 2234, 2393, 2558, 2729, 2905, 3086, 3273, 3466, 3664, 3867, 4076, 4291, 4511, 4736, 4967, 5204, 5446, 5693, 5946, 6205, 6469, 6738, 7013, 7294, 7580
Offset: 0

Views

Author

N. J. A. Sloane, Mar 26 2018

Keywords

Comments

Linear recurrence and g.f. confirmed by Shutov/Maleev link in A301710. - Ray Chandler, Aug 30 2023

Crossrefs

Cf. A301710.

Programs

  • Mathematica
    LinearRecurrence[{3, -4, 4, -3, 1}, {1, 6, 17, 34, 56}, 100] (* Paolo Xausa, Jul 31 2024 *)

Formula

From Colin Barker, Apr 07 2018: (Start)
G.f.: (1 + 3*x + 3*x^2 + 3*x^3 + x^4) / ((1 - x)^3*(1 + x^2)).
a(n) = (1/8+i/8)*((3-3*i) + (-i)^(1+n) + i^n + (11-11*i)*n + (11-11*i)*n^2) where i=sqrt(-1).
a(n) = 3*a(n-1) - 4*a(n-2) + 4*a(n-3) - 3*a(n-4) + a(n-5) for n>4. (End)

Extensions

More terms from R. J. Mathar, Mar 31 2018