cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301752 Clique covering number of the n-triangular grid graph.

Original entry on oeis.org

1, 3, 4, 6, 8, 10, 13, 15, 19, 22, 26, 31, 35, 41, 46, 52, 58, 64, 71, 77, 85, 92, 100, 109, 117, 127, 136, 146, 156, 166, 177, 187, 199, 210, 222, 235, 247, 261, 274, 288, 302, 316, 331, 345, 361, 376, 392, 409, 425, 443, 460, 478, 496, 514, 533, 551, 571
Offset: 1

Views

Author

Eric W. Weisstein, Mar 26 2018

Keywords

Comments

Maximal cliques are triangles in the n-triangular grid graph. The clique covering number cannot be less than the number of nodes divided by three. Perfect nonoverlapping coverings are possible for n + 1 in A072065. - Andrew Howroyd, Jun 27 2018

Crossrefs

Cf. A072065.

Programs

  • Mathematica
    Table[(Sqrt[3] (16 + 3 n (3 + n)) - 9 Cos[n Pi/6] + 2 Sqrt[3] Cos[2 n Pi/3] + 9 Cos[5 n Pi/6] + 9 Sin[n Pi/6] - 9 Sin[5 n Pi/6])/(18 Sqrt[3]), {n, 20}] (* Eric W. Weisstein, Apr 18 2019 *)
    LinearRecurrence[{2, 0, -1, -2, 2, 1, 0, -2, 1}, {1, 3, 4, 6, 8, 10, 13, 15, 19}, 20] (* Eric W. Weisstein, Apr 18 2019 *)
    CoefficientList[Series[(-1 - x + 2 x^2 + x^3 - x^4 - 2 x^5 + 2 x^7 - x^8)/((-1 + x)^3 (1 + x - x^3 + x^5 + x^6)), {x, 0, 20}], x] (* Eric W. Weisstein, Apr 18 2019 *)

Formula

a(n) ~ (n+1)*(n+2)/6. - Andrew Howroyd, Jun 27 2018
a(n) = 2*a(n-1) - a(n-3) - 2*a(n-4) + 2*a(n-5) + a(n-6) - 2*a(n-8) + a(n-9). - Eric W. Weisstein, Apr 18 2019
G.f.: x (-1 - x + 2*x^2 + x^3 - x^4 - 2*x^5 + 2*x^7 - x^8)/((-1 + x)^3*(1 + x - x^3 + x^5 + x^6)). - Eric W. Weisstein, Apr 18 2019

Extensions

a(11)-a(24) from Andrew Howroyd, Jun 27 2018
More terms from Georg Fischer, Jun 04 2019