A301759 Semiperiods of the Fibonacci sequence mod n.
1, 3, 4, 6, 10, 12, 8, 12, 12, 30, 10, 24, 14, 24, 40, 24, 18, 12, 18, 60, 16, 30, 24, 24, 50, 42, 36, 48, 14, 120, 30, 48, 40, 18, 80, 24, 38, 18, 56, 60, 20, 48, 44, 30, 120, 24, 16, 24, 56, 150, 72, 84, 54, 36, 20, 48, 72, 42, 58, 120, 30, 30, 48, 96, 70, 120, 68, 36, 48
Offset: 1
Keywords
Examples
For n = 7 we get 1,0,1,1,2,3,5,1,-1,0,-1,-1,... so a(7) = 8.
Links
- Tom Harris, Notes on the Pisano Semiperiod, Dec. 2017.
- David Singerman and James Strudwick, Petrie polygons, Fibonacci sequences and Farey maps, Ars Mathematica Contemporanea 10, 2 (2016), 349-357.
- David Singerman and James Strudwick, The Farey Maps Modulo N, arXiv:1803.08851 [math.GR], 2018. See p. 6.
Programs
-
Mathematica
Table[NestWhile[# + 1 &, 1, ! (Mod[Fibonacci[#], n] == 0 && With[{f = Mod[Fibonacci[# + 1], n]}, f == 1 || f == n - 1]) &], {n, 69}] (* Jan Mangaldan, Sep 12 2021 *)
-
PARI
a(n) = if (n==1, 1, for(k=1,oo, if (((fibonacci(k) % n) == 0) && (((fibonacci(k+1) % n) == 1) || ((fibonacci(k+1) % n) == n-1)), return (k))));
Comments