cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A301774 Number of odd chordless cycles in the (2n+1)-prism graph.

Original entry on oeis.org

2, 12, 30, 74, 200, 522, 1362, 3572, 9350, 24474, 64080, 167762, 439202, 1149852, 3010350, 7881194, 20633240, 54018522, 141422322, 370248452, 969323030, 2537720634, 6643838880, 17393796002, 45537549122, 119218851372, 312119004990, 817138163594, 2139295485800
Offset: 1

Views

Author

Eric W. Weisstein, Mar 26 2018

Keywords

Comments

Sequence extended to a(1) using the formula/recurrence (actual count for the 3-prism is 0, which reproduces A301775).

Crossrefs

Programs

  • Mathematica
    Table[LucasL[2 n + 1] + 2 Cos[(2 n + 1) Pi/3], {n, 20}]
    LinearRecurrence[{2, 1, 2, -1}, {2, 12, 30, 74}, 20]
    CoefficientList[Series[-2 (-1 - 4 x - 2 x^2 + x^3)/(1 - 2 x - x^2 - 2 x^3 + x^4), {x, 0, 20}], x]

Formula

a(n) = A002878(n) + A131713(n).
a(n) = 2*a(n-1) + a(n-2) + 2*a(n-3) - a(n-4).
G.f.: -2*x*(1+x)*(x^2-3*x-1) / ( (1+x+x^2)*(x^2-3*x+1) ).

A297665 Number of chordless cycles in the n-web graph.

Original entry on oeis.org

3, 10, 17, 26, 37, 54, 83, 132, 211, 336, 535, 856, 1377, 2222, 3589, 5798, 9369, 15146, 24495, 39624, 64103, 103708, 167787, 271468, 439229, 710674, 1149881, 1860530, 3010381, 4870878, 7881227, 12752076, 20633275, 33385320, 54018559, 87403840, 141422361, 228826166
Offset: 3

Views

Author

Eric W. Weisstein, Jan 02 2018

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{4, -6, 4, 0, -2, 1}, {3, 10, 17, 26, 37, 54, 83}, 38]

Formula

a(n) = A000032(n) + A057079(n+1) + n for n >= 4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - 2*a(n-5) + a(n-6) for n >= 10.
G.f.: -x^3*(2*x^6 - 5*x^4 + 6*x^3 - 5*x^2 - 2*x + 3)/((x - 1)^2*(x^2 - x + 1)*(x^2 + x - 1)).

Extensions

Terms for n >= 9 corrected, and formulas and programs adjusted by Pontus von Brömssen, Nov 13 2022
Showing 1-2 of 2 results.