cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301855 Number of divisors d|n such that no other divisor of n has the same Heinz weight A056239(d).

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 4, 2, 4, 4, 5, 2, 6, 2, 6, 4, 4, 2, 4, 3, 4, 4, 6, 2, 6, 2, 6, 4, 4, 4, 5, 2, 4, 4, 6, 2, 8, 2, 6, 6, 4, 2, 4, 3, 6, 4, 6, 2, 8, 4, 8, 4, 4, 2, 4, 2, 4, 4, 7, 4, 8, 2, 6, 4, 6, 2, 4, 2, 4, 6, 6, 4, 8, 2, 6, 5, 4, 2, 6, 4, 4, 4, 8, 2, 6, 4, 6, 4, 4, 4, 4, 2, 6, 6, 9, 2, 8, 2, 8, 8
Offset: 1

Views

Author

Gus Wiseman, Mar 27 2018

Keywords

Examples

			The a(24) = 4 special divisors are 1, 2, 12, 24.
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    uqsubs[y_]:=Join@@Select[GatherBy[Union[Subsets[y]],Total],Length[#]===1&];
    Table[Length[uqsubs[primeMS[n]]],{n,100}]
  • PARI
    A056239(n) = { my(f); if(1==n, 0, f=factor(n); sum(i=1, #f~, f[i,2] * primepi(f[i,1]))); }
    A301855(n) = if(1==n,n,my(m=Map(),w,s); fordiv(n,d,w = A056239(d); if(!mapisdefined(m, w, &s), mapput(m,w,Set([d])), mapput(m,w,setunion(Set([d]),s)))); sumdiv(n,d,(1==length(mapget(m,A056239(d)))))); \\ Antti Karttunen, Jul 01 2018

Extensions

More terms from Antti Karttunen, Jul 01 2018