cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301896 a(n) = product of total number of 0's and total number of 1's in binary expansions of 0, ..., n.

Original entry on oeis.org

0, 1, 4, 8, 20, 35, 54, 72, 117, 165, 221, 280, 352, 425, 504, 576, 726, 875, 1036, 1200, 1386, 1575, 1776, 1976, 2214, 2451, 2700, 2944, 3216, 3479, 3750, 4000, 4455, 4897, 5355, 5808, 6300, 6789, 7296, 7800, 8364, 8925, 9504, 10080, 10695, 11305, 11931, 12544, 13260, 13965, 14688
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 28 2018

Keywords

Examples

			+---+-----+---+---+---+---+----------+
| n | bin.|0's|sum|1's|sum|   a(n)   |
+---+-----+---+---+---+---+----------+
| 0 |   0 | 1 | 1 | 0 | 0 | 1*0 =  0 |
| 1 |   1 | 0 | 1 | 1 | 1 | 1*1 =  1 |
| 2 |  10 | 1 | 2 | 1 | 2 | 2*2 =  4 |
| 3 |  11 | 0 | 2 | 2 | 4 | 2*4 =  8 |
| 4 | 100 | 2 | 4 | 1 | 5 | 4*5 = 20 |
| 5 | 101 | 1 | 5 | 2 | 7 | 5*7 = 35 |
| 6 | 110 | 1 | 6 | 2 | 9 | 6*9 = 54 |
+---+-----+---+---+---+---+----------+
bin. - n written in base 2;
0's - number of 0's in binary expansion of n;
1's - number of 1's in binary expansion of n;
sum - total number of 0's (or 1's) in binary expansions of 0, ..., n.
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, [1, 0], b(n-1)+
         (l-> [add(1-i, i=l), add(i, i=l)])(Bits[Split](n)))
        end:
    a:= n-> (l-> l[1]*l[2])(b(n)):
    seq(a(n), n=0..50);  # Alois P. Heinz, Mar 01 2023
  • Mathematica
    Accumulate[DigitCount[Range[0, 50], 2, 0]] Accumulate[DigitCount[Range[0, 50], 2, 1]]
  • Python
    def A301896(n): return (2+(n+1)*(m:=(n+1).bit_length())-(1<Chai Wah Wu, Mar 01 2023
    
  • Python
    def A301896(n): return (a:=(n+1)*n.bit_count()+(sum((m:=1<>j)-(r if n<<1>=m*(r:=k<<1|1) else 0)) for j in range(1,n.bit_length()+1))>>1))*(2+(n+1)*(t:=(n+1).bit_length())-(1<Chai Wah Wu, Nov 11 2024

Formula

a(n) = A059015(n)*A000788(n).
a(2^k-1) = 2^(k-2)*(2^k*(k - 2) + 4)*k.