A301897 Number of permutations b of length n that satisfy the Diaconis-Graham inequality I_n(b) + EX_n(b) <= D_n(b) with equality.
1, 2, 6, 23, 103, 511, 2719, 15205, 88197, 526018, 3206206, 19885911, 125107063, 796453594, 5121305414, 33213428285, 216998830397, 1426936199824, 9436710005524, 62723077297135, 418784925848463, 2807458708620337, 18889686239933521, 127520180043751313, 863473397167656913, 5863055250124397156
Offset: 1
Keywords
Examples
For n=4, the only permutation b that does not satisfy I_4(b) + EX_4(b) = D_4(b) is b = 3412. (Here, b = 3412 means b_1 = 3, b_2 = 4, b_3 = 1, b_4 = 2. We do not use cycle notation.) We have I_4(b) = 4, EX_4(b) = 4-2 = 2, and D_4(b) = 8, and hence I_4(b) + EX_4(b) = 6 < D_4(b) = 8. For n=5, the 5! - a(5) = 17 permutations b that do not satisfy I_5(b) + EX_5(b) = D_5(b) are the following: 14523, 24513, 34125, 34152, 34512, 34521, 35124, 35142, 35412, 41523, 42513, 43512, 45123, 45132, 45213, 45312, 54123.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- A. Cayley, Note on the theory of permutations, Philosophical Mag., 34 (1849), 527-529.
- Christopher R. Cornwell and Nathan McNew, Unknotted cycles, arXiv:2007.04917 [math.CO], 2020. See p. 20.
- Christopher Cornwell and Nathan McNew, Links and the Diaconis-Graham Inequality, arXiv:2404.16755 [math.CO], 2024.
- P. Diaconis and R. L. Graham, Spearman's footrule as a measure of disarray, J. R. Stat. Soc. Ser. B Stat. Methodol., 39 (1977), 262-268.
- P. Hadjicostas and C. Monico, A re-examination of the Diaconis-Graham inequality, J. Combin. Math. Combin. Comput. 87 (2013), 275-295.
- P. Hadjicostas and C. Monico, A new inequality related to the Diaconis-Graham inequalities and a new characterisation of the dihedral group, Australasian Journal of Combinatorics, 63(2) (2015), 226-245.
- Petros Hadjicostas, Proof of a lower bound for a(n).
- T. Kyle Petersen and Bridget Eileen Tenner, The depth of a permutation, arXiv:1202.4765 [math.CO], 2012.
- T. Kyle Petersen and Bridget Eileen Tenner, The depth of a permutation, Journal of Combinatorics 6 (2015), 145-178.
- Terence Tao, Elegant recursion for A301897, answer to question on MathOverflow. (2023)
- Alexander Woo, The shallow permutations are the unlinked permutations, arXiv:2201.12949 [math.CO], 2022. See Corollary 1.2 p. 2.
Programs
-
Magma
A301897:= func< n | n lt 3 select Factorial(n) else Catalan(n) + (&+[ (&+[ Binomial(n,k-1)*Binomial(n-1,k+j)*Binomial(n-k+j-1,j-1)/j: j in [1..n-k-1]]): k in [1..n-2]]) >; [A301897(n): n in [1..40]]; // G. C. Greubel, Feb 21 2022
-
Mathematica
a[n_]:= a[n]= If[n<2, n, 2*a[n-1] + Sum[a[k+2]*a[n-k-1] + (Sum[a[k+1-j]*a[j], {j, 0, k}] - 3*a[k+2] + 4*a[k+1])*a[n-k-2], {k, 0, n-3}]]; Table[a[n], {n, 40}] (* G. C. Greubel, Feb 20 2022 *)
-
PARI
upto(n)=my(v1); v1=vector(n+1, i, 0); v1[2]=1; for(i=2, n, v1[i+1]=2*v1[i] + sum(k=0, i-3, v1[k+3]*v1[i-k] + v1[i-k-1]*(4*v1[k+2] - 3*v1[k+3] + sum(j=0, k, v1[j+1]*v1[k-j+2])))); v1=vector(n, i, v1[i+1]) \\ Mikhail Kurkov, Aug 01 2023
-
Sage
@CachedFunction def a(n): if (n<2): return n else: return 2*a(n-1) + sum(a(k+2)*a(n-k-1) + (sum(a(j)*a(k-j-1) for j in (0..k)) - 3*(k+2) + 4*a(k+1))*a(n-k-2) for k in (0..n-3)) [a(n) for n in (1..40)] # G. C. Greubel, Feb 20 2022
Formula
a(n) <= 1 + Sum_{m=2..n} ((m-1)!*Sum_{k=1..m-1} (2/k) - Sum_{k=1..m-1} (k-1)!*(m-k-1)!).
a(n) >= 1 + Sum_{m=2..n} (m-1)*Fibonacci(2*m-3) = 1 + Sum_{2 <= m <= n} (m-1)*A001519(m-1). (For a proof of this lower bound, see the links above.)
G.f.: A(x) satisfies 0 = x^2*A(x)^3 + (4*x^2-3*x+1)*A(x)^2 + (5*x^2-3*x)*A(x) + 2*x^2. - Michael D. Weiner, Jun 29 2020
a(n) = binomial(2*n,n)/(n+1) + Sum_{k=1..n-2} Sum_{j=1..n-1-k} binomial(n,k-1)*binomial(n-1,k+j)*binomial(n-k+j-1,j-1)*(1/j). - Michael D. Weiner, Jun 30 2020
If, in Weiner's formula for a(n), we replace 1/j with (-1)^j/j, then we get the Motzkin numbers A001006. That is A001006(n) = binomial(2*n,n)*1/(n+1) + Sum_{k=1..n-2} Sum_{j=1..n-1-k} binomial(n,k-1)*binomial(n-1,k+j)*binomial(n-k+j-1,j-1)*(-1)^j/j for n >= 1. - Petros Hadjicostas, Jul 01 2020
From G. C. Greubel, Feb 20 2022: (Start)
a(n) = 2*a(n-1) + Sum_{k=0..n-3} ( a(k+2)*a(n-k-1) + ((Sum_{j=0..k} a(j)*a(k-j+1)) - 3*a(k+2) + 4*a(k+1))*a(n-k-2) ), with a(0) = 0, a(1) = 1.
a(n) = 1 + Sum_{k=1..n-1} ((-2)^(n-k-1)/(n-k))*binomial(n, k-1)*JacobiP(n-k-1, 2*k -2*n+1, k; 0), where JacobiP(n, a, b; x) is the Jacobi polynomial. (End)
D-finite with recurrence 3*(n+2)*(n-1)*a(n) +6*(10*n+9)*(n-2)*a(n-1) +(-421*n^2+1259*n-348)*a(n-2) +18*(72*n^2-334*n+369)*a(n-3) +(-1801*n^2+11339*n-17940)*a(n-4) -30*(n-5)*(10*n-51)*a(n-5) +25*(n-5)*(n-6)*a(n-6)=0. - R. J. Mathar, Jun 25 2023
a(n) ~ sqrt((1 + s)*(-3*s + 2*r*(2 + 3*s + s^2)) / (1 - 3*r + r^2*(4 + 3*s))) / (2*sqrt(Pi)*n^(3/2)*r^(n - 1/2)), where r = 0.13826667124150045791560993482... and s = 0.23874607068542101537529085629... are positive real roots of the system of equations s^2 + r^2*(1 + s)^2*(2 + s) = 3*r*s*(1 + s), 2*s + r^2*(5 + 8*s + 3*s^2) = 3*r*(1 + 2*s). - Vaclav Kotesovec, Jul 05 2024
Extensions
Terms a(15) onward added by G. C. Greubel, Feb 20 2022
Comments