cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301939 Integers whose arithmetic derivative is equal to their Dedekind function.

Original entry on oeis.org

8, 81, 108, 2500, 2700, 3375, 5292, 13068, 15625, 18252, 31212, 38988, 57132, 67228, 90828, 94500, 103788, 147852, 181548, 199692, 231525, 238572, 303372, 375948, 401868, 484812, 544428, 575532, 674028, 713097, 744012, 855468, 1016172, 1058841, 1101708, 1145772
Offset: 1

Views

Author

Paolo P. Lava, Mar 29 2018

Keywords

Comments

If n = Product_{k=1..j} p_k ^ i_k with each p_k prime, then psi(n) = n * Product_{k=1..j} (p_k + 1)/p_k and n' = n*Sum_{k=1..j} i_k/p_k.
Thus every number of the form p^(p+1), where p is prime, is in the sequence.
The sequence also contains every number of the form 108*p^2 where p is a prime > 3, or 108*p^3*(p+2) where p > 3 is in A001359. - Robert Israel, Mar 29 2018

Examples

			5292 = 2^2 * 3^3 * 7^2.
n' = 5292*(2/2 + 3/3 + 2/7) = 12096,
psi(n) = 5292*(1 + 1/2)*(1 + 1/3)*(1 + 1/7) = 12096.
		

Crossrefs

Cf. A001359, A001615, A003415, A166374, A342458. A345005 (gives the odd terms).
Subsequence of A345003.

Programs

  • Maple
    with(numtheory): P:=proc(n) local a,p; a:=ifactors(n)[2];
    if add(op(2,p)/op(1,p),p=a)=mul(1+1/op(1,p),p=a) then n; fi; end:
    seq(P(i),i=1..10^6);
  • Mathematica
    selQ[n_] := Module[{f = FactorInteger[n], p, e}, Product[{p, e} = pe; p^e + p^(e-1), {pe, f}] == Sum[{p, e} = pe; (n/p)e, {pe, f}]];
    Select[Range[10^6], selQ] (* Jean-François Alcover, Oct 16 2020 *)
  • PARI
    dpsi(f) = prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1));
    ader(n, f) = sum(i=1, #f~, n/f[i, 1]*f[i, 2]);
    isok(n) = my(f=factor(n)); dpsi(f) == ader(n, f); \\ Michel Marcus, Mar 29 2018

Formula

Solutions of the equation n' = psi(n).