A301939 Integers whose arithmetic derivative is equal to their Dedekind function.
8, 81, 108, 2500, 2700, 3375, 5292, 13068, 15625, 18252, 31212, 38988, 57132, 67228, 90828, 94500, 103788, 147852, 181548, 199692, 231525, 238572, 303372, 375948, 401868, 484812, 544428, 575532, 674028, 713097, 744012, 855468, 1016172, 1058841, 1101708, 1145772
Offset: 1
Examples
5292 = 2^2 * 3^3 * 7^2. n' = 5292*(2/2 + 3/3 + 2/7) = 12096, psi(n) = 5292*(1 + 1/2)*(1 + 1/3)*(1 + 1/7) = 12096.
Links
- Paolo P. Lava, Table of n, a(n) for n = 1..100
Crossrefs
Programs
-
Maple
with(numtheory): P:=proc(n) local a,p; a:=ifactors(n)[2]; if add(op(2,p)/op(1,p),p=a)=mul(1+1/op(1,p),p=a) then n; fi; end: seq(P(i),i=1..10^6);
-
Mathematica
selQ[n_] := Module[{f = FactorInteger[n], p, e}, Product[{p, e} = pe; p^e + p^(e-1), {pe, f}] == Sum[{p, e} = pe; (n/p)e, {pe, f}]]; Select[Range[10^6], selQ] (* Jean-François Alcover, Oct 16 2020 *)
-
PARI
dpsi(f) = prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1)); ader(n, f) = sum(i=1, #f~, n/f[i, 1]*f[i, 2]); isok(n) = my(f=factor(n)); dpsi(f) == ader(n, f); \\ Michel Marcus, Mar 29 2018
Formula
Solutions of the equation n' = psi(n).
Comments