cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A302017 Expansion of 1/(1 - x*Product_{k>=1} (1 + x^(2*k-1))).

Original entry on oeis.org

1, 1, 2, 3, 6, 11, 21, 39, 73, 137, 257, 482, 903, 1693, 3173, 5948, 11149, 20899, 39174, 73430, 137641, 258002, 483614, 906513, 1699219, 3185111, 5970352, 11191163, 20977346, 39321116, 73705711, 138158128, 258971363, 485430483, 909918190, 1705601814, 3197075934, 5992778881, 11233201667
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 30 2018

Keywords

Crossrefs

Antidiagonal sums of absolute values of A286352.

Programs

  • Mathematica
    nmax = 38; CoefficientList[Series[1/(1 - x Product[(1 + x^(2 k - 1)), {k, 1, nmax}]), {x, 0, nmax}], x]
    nmax = 38; CoefficientList[Series[1/(1 - x QPochhammer[x^2]^2/(QPochhammer[x] QPochhammer[x^4])), {x, 0, nmax}], x]

Formula

G.f.: 1/(1 - x*Product_{k>=1} 1/(1 + (-x)^k)).
a(0) = 1; a(n) = Sum_{k=1..n} A000700(k-1)*a(n-k).
a(n) ~ c / r^n, where r = 0.5334880525001986092393688937248506539793821912... is the root of the equation 1 + r - r^2 * QPochhammer(-1/r, r^2) = 0 and c = 0.48000092330632206397886602198643227268597451507794232644772186731542555975... = (2*(1 + r)*Log[r])/(2*(2 + r)*Log[r] + (1 + r)*Log[1 - r^2] + (1 + r) * QPolyGamma[Log[-1/r] / Log[r^2], r^2] + 4*r^4*Log[r] * Derivative[0,1][QPochhammer][-1/r, r^2]). - Vaclav Kotesovec, Mar 31 2018