A302018 Expansion of 1/(1 - x*(1 + theta_3(x))/2), where theta_3() is the Jacobi theta function.
1, 1, 2, 3, 5, 9, 15, 26, 44, 75, 129, 220, 377, 644, 1101, 1883, 3219, 5506, 9414, 16098, 27527, 47069, 80488, 137630, 235343, 402427, 688134, 1176685, 2012085, 3440591, 5883279, 10060183, 17202533, 29415676, 50299693, 86010564, 147074801, 251492331, 430042340, 735356089, 1257431006
Offset: 0
Keywords
Links
- N. J. A. Sloane, Transforms
- Eric Weisstein's World of Mathematics, Jacobi Theta Functions
- Index entries for sequences related to sums of squares
Programs
-
Mathematica
nmax = 40; CoefficientList[Series[1/(1 - x (1 + EllipticTheta[3, 0, x])/2), {x, 0, nmax}], x] nmax = 40; CoefficientList[Series[1/(1 - x Sum[x^k^2, {k, 0, nmax}]), {x, 0, nmax}], x]
Formula
G.f.: 1/(1 - x*Sum_{k>=0} x^(k^2)).
a(0) = 1; a(n) = Sum_{k=1..n} A010052(k-1)*a(n-k).