cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A290054 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of (Sum_{j>=0} x^(j^3))^k.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 3, 1, 0, 0, 1, 4, 3, 0, 0, 0, 1, 5, 6, 1, 0, 0, 0, 1, 6, 10, 4, 0, 0, 0, 0, 1, 7, 15, 10, 1, 0, 0, 0, 0, 1, 8, 21, 20, 5, 0, 0, 0, 1, 0, 1, 9, 28, 35, 15, 1, 0, 0, 2, 0, 0, 1, 10, 36, 56, 35, 6, 0, 0, 3, 2, 0, 0, 1, 11, 45, 84, 70, 21, 1, 0, 4, 6, 0, 0, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 19 2017

Keywords

Comments

A(n,k) is the number of ways of writing n as a sum of k nonnegative cubes.

Examples

			Square array begins:
1,  1,  1,  1,  1,   1,  ...
0,  1,  2,  3,  4,   5,  ...
0,  0,  1,  3,  6,  10,  ...
0,  0,  0,  1,  4,  10,  ...
0,  0,  0,  0,  1,   5,  ...
0,  0,  0,  0,  0,   1,  ...
		

Crossrefs

Main diagonal gives A291700.
Antidiagonal sums give A302019.

Programs

  • Mathematica
    Table[Function[k, SeriesCoefficient[Sum[x^i^3, {i, 0, n}]^k, {x, 0, n}]][j - n], {j, 0, 12}, {n, 0, j}] // Flatten

Formula

G.f. of column k: (Sum_{j>=0} x^(j^3))^k.

A302018 Expansion of 1/(1 - x*(1 + theta_3(x))/2), where theta_3() is the Jacobi theta function.

Original entry on oeis.org

1, 1, 2, 3, 5, 9, 15, 26, 44, 75, 129, 220, 377, 644, 1101, 1883, 3219, 5506, 9414, 16098, 27527, 47069, 80488, 137630, 235343, 402427, 688134, 1176685, 2012085, 3440591, 5883279, 10060183, 17202533, 29415676, 50299693, 86010564, 147074801, 251492331, 430042340, 735356089, 1257431006
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 30 2018

Keywords

Crossrefs

Antidiagonal sums of A045847.

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[1/(1 - x (1 + EllipticTheta[3, 0, x])/2), {x, 0, nmax}], x]
    nmax = 40; CoefficientList[Series[1/(1 - x Sum[x^k^2, {k, 0, nmax}]), {x, 0, nmax}], x]

Formula

G.f.: 1/(1 - x*Sum_{k>=0} x^(k^2)).
a(0) = 1; a(n) = Sum_{k=1..n} A010052(k-1)*a(n-k).
Showing 1-2 of 2 results.