A302058 Numbers that are not square pyramidal numbers.
2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82
Offset: 1
Links
- Eric Weisstein's World of Mathematics, Square Pyramidal Number
Programs
-
Mathematica
Module[{nn=6,m},m=(nn(nn+1)(2nn+1))/6 ;Complement[Range[m],Table[(n(n+1)(2n+1))/6,{n,nn}]]] (* Harvey P. Dale, Aug 22 2020 *)
-
Python
from sympy import integer_nthroot def A302058(n): return n+(m:=integer_nthroot(3*n,3)[0])-(6*n<=m*(m-1)*(2*m+5)) # Chai Wah Wu, Oct 01 2024
Formula
a(n) = n+m if 6n>m(m-1)(2m+5) and a(n) = n+m-1 otherwise where m = floor((3n)^(1/3)). - Chai Wah Wu, Oct 01 2024
Comments