A302110 Let d be the list of A000005(n) = tau(n) divisors of n. Then a(n) is the largest k such that Sum_{i=1..#d-k} d_i > n.
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Programs
-
PARI
A125747(n) = { my(k=0,s=0); fordiv(n,d, k++; s += d; if(s>=n,return(k))); }; A302110(n) = (numdiv(n) - A125747(n)); \\ Antti Karttunen, Apr 02 2018
Comments