cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A302175 a(n) = [2^A006666(n)/3^A006667(n)], where [x] = floor(x).

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 8, 11, 10, 12, 14, 14, 16, 16, 16, 18, 22, 22, 21, 21, 25, 25, 28, 29, 28, 32, 33, 33, 33, 36, 32, 39, 37, 37, 44, 44, 44, 47, 42, 48, 42, 53, 50, 50, 50, 54, 56, 59, 59, 59, 56, 56, 64, 64, 67, 71, 67, 71, 67, 67, 72, 72, 64, 79, 79, 79, 75
Offset: 1

Views

Author

Michel Lagneau, Apr 03 2018

Keywords

Comments

The sequence contains A211981 and the powers of 2 (A000079).
There exists a subset E = { 1, 2, 3, 4, 5, 8, 10, 16, 21, 32, 42, 64, 85, 128, 170, 227, 256, 341, 512, 682, 1024, 2048, ...} in {a(n)} such that each element m of E generates the Collatz sequence of iterates m -> T_1(m) -> T_2(m) -> T_3(m) -> ... -> 1 where any T_i(m) is an element of E of the form [2^i /3^j] where i = A006666(m), or A006666(m)-1, or ... and j = A006667(m), or A006667(m)-1, or ..., but with A006667(m) <= 3. If m is even then m/2 is in E.
For example, the statement that "3 is an element of E" implies that each element of the trajectory 3 -> 10 -> 5 -> 16 -> 8 -> 4 -> 2 -> 1 belongs to E. Thus the trajectory of the number 3 can be represented by [2^5/3^2] -> [2^5/3^1] -> [2^4/3^1] -> [2^4/3^0] -> [2^3/3^0] -> [2^2/3^0] -> [2^1/3^0] -> [2^0/3^0].

Examples

			a(39) = [2^A006666(39)/3^A006667(39)] = [2^23/3^11] = [47.353937...] = 47.
		

Crossrefs

Programs

  • Mathematica
    Collatz[n_] := NestWhileList[If[EvenQ[#], #/2, 3 # + 1] &, n, # > 1 &]; nn = 70; t = {}; n = 0; While[Length[t] < nn, n++; c = Collatz[n]; ev = Length[Select[c, EvenQ]]; od = Length[c] - ev - 1; AppendTo[t, Floor[2^ev/3^od]]]; t
  • PARI
    a(n) = my(t, h); while(n>1, if(n%2, n=3*n+1; t++, n>>=1; h++)); 2^h\3^t; \\ Michel Marcus, May 05 2018