A302197 Hurwitz logarithm of Catalan numbers [1,1,2,5,14,...].
0, 1, 1, 1, 0, -4, -10, 15, 210, 504, -3528, -34440, -36960, 1512720, 11763180, -24549525, -1118467350, -6466860400, 62185563440, 1297024576848, 3903558763104, -149417396724960, -2150022118411440, 3233834859735480, 449839942314082320
Offset: 0
Keywords
Links
- V. E. Adler and A. B. Shabat, Volterra chain and Catalan numbers, arXiv:1810.13198 [nlin.SI], 2018.
- Xing Gao and William F. Keigher, Interlacing of Hurwitz series, Communications in Algebra, 45:5 (2017), 2163-2185, DOI: 10.1080/00927872.2016.1226885 .
Programs
-
Maple
# first load Maple commands for Hurwitz operations from link in A302189. s:=[seq(binomial(2*n,n)/(n+1),n=0..30)]; Hlog(s);
-
Mathematica
nmax = 30; CoefficientList[Series[2*x + Log[BesselI[0, 2*x] - BesselI[1, 2*x]], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Jun 26 2023 *)
-
Sage
A = PowerSeriesRing(QQ, 'x') f = A([catalan_number(i) for i in range(30)]).ogf_to_egf().log() print(list(f.egf_to_ogf())) # F. Chapoton, Apr 11 2020
Formula
E.g.f. is log of e.g.f. for Catalan numbers.
E.g.f. is also the log of e^x times the e.g.f. of A005043. - Tom Copeland, Jun 26 2023
Comments