A302233 Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of Product_{j>=1} (1 + x^(k*j))/(1 + x^j).
1, 1, 0, 1, -1, 0, 1, -1, 1, 0, 1, -1, 0, -2, 0, 1, -1, 0, 0, 2, 0, 1, -1, 0, -1, 0, -3, 0, 1, -1, 0, -1, 2, -1, 4, 0, 1, -1, 0, -1, 1, -2, 1, -5, 0, 1, -1, 0, -1, 1, 0, 1, -1, 6, 0, 1, -1, 0, -1, 1, -1, 0, -2, 1, -8, 0, 1, -1, 0, -1, 1, -1, 2, -1, 4, 0, 10, 0, 1, -1, 0, -1, 1, -1, 1, -2, 1, -4, 0, -12, 0
Offset: 0
Examples
Square array begins: 1, 1, 1, 1, 1, 1, ... 0, -1, -1, -1, -1, -1, ... 0, 1, 0, 0, 0, 0, ... 0, -2, 0, -1, -1, -1, ... 0, 2, 0, 2, 1, 1, ... 0, -3, -1, -2, 0, -1, ...
Crossrefs
Programs
-
Mathematica
Table[Function[k, SeriesCoefficient[Product[(1 + x^(k i))/(1 + x^i), {i, 1, n}], {x, 0, n}]][j - n + 1], {j, 0, 12}, {n, 0, j}] // Flatten Table[Function[k, SeriesCoefficient[QPochhammer[-1, x^k]/QPochhammer[-1, x], {x, 0, n}]][j - n + 1], {j, 0, 12}, {n, 0, j}] // Flatten
Formula
G.f. of column k: Product_{j>=1} (1 + x^(k*j))/(1 + x^j).
For asymptotics of column k see comment from Vaclav Kotesovec in A145707.