cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A302236 Expansion of Product_{k>=1} (1 + x^prime(k))/(1 + x^k).

Original entry on oeis.org

1, -1, 1, -1, 0, 0, -1, 1, -1, 0, 0, 0, 0, 1, -1, 1, 0, 0, 1, 0, 0, 0, -1, 1, 0, -1, 1, -2, 1, 0, 0, 2, -1, 0, 0, -1, 2, -1, -1, 1, -2, 1, 0, 0, 0, -2, -1, 2, 0, 0, 1, -3, 2, -1, 1, 2, -2, -1, -1, 1, 3, 0, -2, 1, -2, 0, 3, 0, 0, -2, -2, 5, 1, 1, -1, -4, 1, -1, 2, 4, -2
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 03 2018

Keywords

Comments

The difference between the number of partitions of n into an even number of nonprime parts and the number of partitions of n into an odd number of nonprime parts.
Convolution of the sequences A000586 and A081362.

Crossrefs

Programs

  • Mathematica
    nmax = 80; CoefficientList[Series[Product[(1 + x^Prime[k])/(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 80; CoefficientList[Series[Product[1/(1 + Boole[!PrimeQ[k]] x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} 1/(1 + x^A018252(k)).

A328970 Numbers k such that the coefficient of x^k in the expansion of Product_{j>=1} (1 - x^j) / (1 - x^prime(j)) is zero.

Original entry on oeis.org

2, 3, 9, 11, 12, 14, 17, 18, 19, 20, 28, 44, 47, 51, 52, 55, 56, 58, 59, 62, 64, 65, 69, 80, 81, 82, 83, 87, 91, 92, 94, 96, 99, 105, 106, 107, 113, 118, 119, 126, 127, 131, 147, 155, 157, 160, 161, 162, 164, 178, 179, 180, 215, 218, 224, 227, 257, 259, 269, 295
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 01 2019

Keywords

Comments

Numbers k such that number of partitions of k into an even number of distinct nonprime parts equals number of partitions of k into an odd number of distinct nonprime parts.
Positions of 0's in A302234.

Crossrefs

Programs

  • Mathematica
    a[j_] := a[j] = If[j == 0, 1, -Sum[Sum[Boole[!PrimeQ[d]] d, {d, Divisors[k]}] a[j - k], {k, 1, j}]/j]; Select[Range[300], a[#] == 0 &]
    Flatten[Position[nmax = 300; Rest[CoefficientList[Series[Product[(1 - x^j)/(1 - x^Prime[j]), {j, 1, nmax}], {x, 0, nmax}], x]], 0]]
Showing 1-2 of 2 results.