A302332 a(0)=1, a(1)=193; for n>1, a(n) = 194*a(n-1) - a(n-2).
1, 193, 37441, 7263361, 1409054593, 273349327681, 53028360515521, 10287228590683393, 1995669318232062721, 387149560508429484481, 75105019069317087926593, 14569986549887006628274561, 2826502285659009968797338241, 548326873431298046940055344193, 106372586943386162096401939435201
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..400
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (194,-1).
Crossrefs
Programs
-
Mathematica
LinearRecurrence[{194, -1}, {1, 193}, 20]
-
PARI
x='x+O('x^99); Vec((1-x)/(1-194*x+x^2)) \\ Altug Alkan, Apr 06 2018
Formula
G.f.: (1 - x)/(1 - 194*x + x^2).
a(n) = a(-1-n).
a(n) = cosh((2*n + 1)*arccosh(7))/7.
a(n) = ((7 + 4*sqrt(3))^(2*n + 1) + 1/(7 + 4*sqrt(3))^(2*n + 1))/14.
a(n) = (a(n-1)^2 + 192)/a(n-2). - Klaus Purath, Aug 31 2020
a(n) = (1/7)*T(2*n+1, 7), where T(n,x) denotes the n-th Chebyshev polynomial of the first kind. - Peter Bala, Jul 08 2022
Comments