A302335 Constant coefficient of the quadratic polynomials giving the numbers of 2k-cycles in the n X n grid graph for n >= k-1.
0, 1, 4, 26, 164, 1046, 6672, 42790, 275888, 1787624, 11634704
Offset: 1
Examples
Let p(k,n) be the number of 2k-cycles in the n X n grid graph for n >= k-1. p(k,n) are quadratic polynomials in n, with the first few given by: p(1,n) = 0, p(2,n) = 1 - 2*n + n^2, p(3,n) = 4 - 6*n + 2*n^2, p(4,n) = 26 - 28*n + 7*n^2, p(5,n) = 164 - 140*n + 28*n^2, p(6,n) = 1046 - 740*n + 124*n^2, p(7,n) = 6672 - 4056*n + 588*n^2, p(8,n) = 42790 - 22904*n + 2938*n^2, p(9,n) = 275888 - 132344*n + 15268*n^2, ... The constant coefficients give a(n), so the first few are 0, 1, 4, 26, 164, .... - _Eric W. Weisstein_, Apr 05 2018
Links
- Eric Weisstein's World of Mathematics, Graph Cycle
- Eric Weisstein's World of Mathematics, Grid Graph
Comments