cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A002931 Number of self-avoiding polygons of length 2n on square lattice (not allowing rotations).

Original entry on oeis.org

0, 1, 2, 7, 28, 124, 588, 2938, 15268, 81826, 449572, 2521270, 14385376, 83290424, 488384528, 2895432660, 17332874364, 104653427012, 636737003384, 3900770002646, 24045500114388, 149059814328236, 928782423033008, 5814401613289290, 36556766640745936
Offset: 1

Views

Author

Keywords

Comments

Translations are allowed, but not rotations or reflections.
a(n) is also the coefficient of n^2 in the sequence of quadratic polynomials giving the numbers of 2k-cycles in the n X n grid graph for n >= k-1 (see the example). - Eric W. Weisstein, Apr 05 2018

Examples

			At length 8 there are 7 polygons, consisting of the 2, 1, 4 resp. rotations of:
._. .___. .___.
| | | . | | ._|
| | |___| |_|
|_|
Let p(k,n) be the number of 2k-cycles in the n X n grid graph for n >= k-1.  p(k,n) are quadratic polynomials in n, with the first few given by:
p(1,n) = 0,
p(2,n) = 1 - 2*n + n^2,
p(3,n) = 4 - 6*n + 2*n^2,
p(4,n) = 26 - 28*n + 7*n^2,
p(5,n) = 164 - 140*n + 28*n^2,
p(6,n) = 1046 - 740*n + 124*n^2,
p(7,n) = 6672 - 4056*n + 588*n^2,
p(8,n) = 42790 - 22904*n + 2938*n^2,
p(9,n) = 275888 - 132344*n + 15268*n^2,
...
The quadratic coefficients give a(n), so the first few are 0, 1, 2, 7, 28, 124, .... - _Eric W. Weisstein_, Apr 05 2018
		

References

  • N. Clisby and I. Jensen: A new transfer-matrix algorithm for exact enumerations: self-avoiding polygons on the square lattice, J. Phys. A: Math. Theor. 45 (2012). Also arXiv:1111.5877, 2011. [Extends sequence to a(65)]
  • I. G. Enting: Generating functions for enumerating self-avoiding rings on the square lattice, J. Phys. A: Math. Gen. 13 (1980). pp. 3713-3722. See Table 2.
  • A. J. Guttmann, Asymptotic analysis of power-series expansions, pp. 1-234 of C. Domb and J. L. Lebowitz, editors, Phase Transitions and Critical Phenomena. Vol. 13, Academic Press, NY, 1989.
  • B. D. Hughes, Random Walks and Random Environments, Oxford 1995, vol. 1, p. 461.
  • I. Jensen: A parallel algorithm for the enumeration of self-avoiding polygons on the square lattice, J. Phys. A: Math. Gen. 36 (2003). [Extends sequence to a(55)]
  • I. Jensen and A. J. Guttmann: Self-avoiding polygons on the square lattice, J. Phys. A: Math. Gen. 32 (1999). Also arXiv:cond-mat/9905291. [Extends sequence to a(45)]
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A056634, A036638, A036639. Equals A010566(n)/(4n).
Cf. A057730.
Cf. A302335 (constant coefficients in p(k,n)).
Cf. A302336 (linear coefficients in p(k,n)).

Extensions

Updated by N. J. A. Sloane, Mar 18 2021

A302337 Triangle read by rows: T(n,k) is the number of 2k-cycles in the n X n grid graph (2 <= k <= floor(n^2/2), n >= 2).

Original entry on oeis.org

1, 4, 4, 5, 9, 12, 26, 52, 76, 32, 6, 16, 24, 61, 164, 446, 1100, 2102, 2436, 1874, 900, 226, 25, 40, 110, 332, 1070, 3504, 11144, 32172, 77874, 146680, 217470, 255156, 233786, 158652, 69544, 13732, 1072, 36, 60, 173, 556, 1942, 7092, 26424, 97624, 346428, 1136164, 3313812, 8342388, 18064642, 33777148, 54661008, 76165128, 89790912, 86547168, 64626638, 34785284, 12527632, 2677024, 255088
Offset: 2

Views

Author

Eric W. Weisstein, Apr 05 2018

Keywords

Examples

			Triangle begins:
   1;
   4,  4,  5;
   9, 12, 26,  52,  76,   32,    6;
  16, 24, 61, 164, 446, 1100, 2102, 2436, 1874, 900, 226;
  ...
So for example, the 3 X 3 grid graph has 4 4-cycles, 4 6-cycles, and 5 8-cycles.
		

Crossrefs

Cf. A003763 (number of Hamiltonian cycles in 2n X 2n grid graph).
Cf. A140517 (number of cycles).
Cf. A301648 (number of longest cycles).

Programs

  • Mathematica
    Flatten[Table[Tally[Length /@ FindCycle[GridGraph[{n, n}], Infinity, All]][[All, 2]], {n, 6}]] (* Eric W. Weisstein, Mar 26 2021 *)
  • Python
    # Using graphillion
    from graphillion import GraphSet
    import graphillion.tutorial as tl
    def A302337(n):
        universe = tl.grid(n - 1, n - 1)
        GraphSet.set_universe(universe)
        cycles = GraphSet.cycles()
        return [cycles.len(2 * k).len() for k in range(2, n * n // 2 + 1)]
    print([i for n in range(2, 8) for i in A302337(n)])  # Seiichi Manyama, Mar 29 2020

Formula

Row sums equal A140517(n).
Length of row n equals A047838(n) = floor(n^2/2) - 1.
T(n,2) = 1 - 2*n + n^2 = (n-1)^2.
T(n,3) = 4 - 6*n + 2*n^2 = A046092(n-2).
T(n,4) = 26 - 28*n + 7*n^2 for n > 2.
T(n,5) = 164 - 140*n + 28*n^2 for n > 3.
T(n,6) = 1046 - 740*n + 124*n^2 for n > 4.
T(n,k) = A302335(k) - A302336(k)*n + A002931(k)*n^2 for n > k-2.
T(n,floor(n^2/2)) = A301648(n).
T(n,n^2/2) = A003763(n) for n even.

A302336 Linear coefficient (in absolute value) of the quadratic polynomials giving the numbers of 2k-cycles in the n X n grid graph for n >= k-1.

Original entry on oeis.org

0, 2, 6, 28, 140, 740, 4056, 22904, 132344, 778832, 4652404, 28140536, 172021360, 1061153560, 6597813620, 41307119692, 260198053200, 1647958588568, 10488324116052, 67046234983840, 430300354820176, 2771678138269600, 17912347088664868, 116113406138798112
Offset: 1

Views

Author

Eric W. Weisstein, Apr 05 2018

Keywords

Examples

			Let p(k,n) be the number of 2k-cycles in the n X n grid graph for n >= k-1. p(k,n) are quadratic polynomials in n, with the first few given by:
  p(1,n) =      0,
  p(2,n) =      1 -      2*n +       n^2,
  p(3,n) =      4 -      6*n +     2*n^2,
  p(4,n) =     26 -     28*n +     7*n^2,
  p(5,n) =    164 -    140*n +    28*n^2,
  p(6,n) =   1046 -    740*n +   124*n^2,
  p(7,n) =   6672 -   4056*n +   588*n^2,
  p(8,n) =  42790 -  22904*n +  2938*n^2,
  p(9,n) = 275888 - 132344*n + 15268*n^2,
  ...
The linear coefficients give a(n), so the first few are 0, 2, 6, 28, 140, .... - _Eric W. Weisstein_, Apr 05 2018
		

Crossrefs

Cf. A302335 (constant coefficients).
Cf. A002931 (quadratic coefficients).

Formula

a(n) = 2*A006772(n). - Andrey Zabolotskiy, Nov 09 2018

Extensions

Terms a(12) and beyond added using data from A006772 by Andrey Zabolotskiy, Feb 10 2022
Showing 1-3 of 3 results.