A302336
Linear coefficient (in absolute value) of the quadratic polynomials giving the numbers of 2k-cycles in the n X n grid graph for n >= k-1.
Original entry on oeis.org
0, 2, 6, 28, 140, 740, 4056, 22904, 132344, 778832, 4652404, 28140536, 172021360, 1061153560, 6597813620, 41307119692, 260198053200, 1647958588568, 10488324116052, 67046234983840, 430300354820176, 2771678138269600, 17912347088664868, 116113406138798112
Offset: 1
Let p(k,n) be the number of 2k-cycles in the n X n grid graph for n >= k-1. p(k,n) are quadratic polynomials in n, with the first few given by:
p(1,n) = 0,
p(2,n) = 1 - 2*n + n^2,
p(3,n) = 4 - 6*n + 2*n^2,
p(4,n) = 26 - 28*n + 7*n^2,
p(5,n) = 164 - 140*n + 28*n^2,
p(6,n) = 1046 - 740*n + 124*n^2,
p(7,n) = 6672 - 4056*n + 588*n^2,
p(8,n) = 42790 - 22904*n + 2938*n^2,
p(9,n) = 275888 - 132344*n + 15268*n^2,
...
The linear coefficients give a(n), so the first few are 0, 2, 6, 28, 140, .... - _Eric W. Weisstein_, Apr 05 2018
Cf.
A302335 (constant coefficients).
Cf.
A002931 (quadratic coefficients).
A333651
Triangle T(n,k), n >= 2, 0 <= k <= floor(n^2/2)-2, read by rows, where T(n,k) is the number of 2*(k+2)-cycles in the n X n grid graph which pass through NW corner (0,0).
Original entry on oeis.org
1, 1, 2, 4, 1, 2, 6, 18, 40, 24, 6, 1, 2, 6, 20, 72, 248, 698, 1100, 1096, 662, 206, 1, 2, 6, 20, 74, 298, 1228, 4762, 15984, 40026, 75524, 109150, 121130, 99032, 51964, 11996, 1072, 1, 2, 6, 20, 74, 300, 1300, 5844, 26148, 110942, 427388, 1393796, 3790524, 8648638, 16727776, 27529284, 38120312, 43012614, 37385280, 23166526, 9496426, 2286972, 242764
Offset: 2
T(3,0) = 1;
+--*
| |
*--*
T(3,1) = 2;
+--*--* +--*
| | | |
*--*--* * *
| |
*--*
T(3,2) = 4;
+--*--* +--*--* +--*--* +--*
| | | | | | | |
* * * *--* *--* * * *--*
| | | | | | | |
*--*--* *--* *--* *--*--*
Triangle starts:
===================================================
n\k| 0 1 2 3 4 5 6 ... 10 ... 16
---|-----------------------------------------------
2 | 1;
3 | 1, 2, 4;
4 | 1, 2, 6, 18, 40, 24, 6;
5 | 1, 2, 6, 20, 72, 248, 698, ... , 206;
6 | 1, 2, 6, 20, 74, 298, 1228, .......... , 1072;
7 | 1, 2, 6, 20, 74, 300, 1300, ...
8 | 1, 2, 6, 20, 74, 300, 1302, ...
9 | 1, 2, 6, 20, 74, 300, 1302, ...
-
# Using graphillion
from graphillion import GraphSet
import graphillion.tutorial as tl
def A333651(n):
universe = tl.grid(n - 1, n - 1)
GraphSet.set_universe(universe)
cycles = GraphSet.cycles().including(1)
return [cycles.len(2 * k).len() for k in range(2, n * n // 2 + 1)]
print([i for n in range(2, 8) for i in A333651(n)])
A333652
Triangle T(n,k), n >= 2, 0 <= k <= floor(n^2/2)-n, read by rows, where T(n,k) is the number of 2*(k+n)-cycles in the n X n grid graph which pass through NW and SW corners.
Original entry on oeis.org
1, 1, 3, 1, 6, 17, 17, 6, 1, 10, 45, 167, 404, 570, 460, 186, 1, 15, 100, 506, 2164, 7726, 20483, 39401, 56015, 57632, 37450, 10340, 1072, 1, 21, 196, 1316, 7066, 33983, 147377, 546400, 1656592, 4099732, 8394433, 14227675, 19443270, 20239262, 14767415, 7007270, 1926990, 230440
Offset: 2
T(3,0) = 1;
+--*
| |
* *
| |
+--*
T(3,1) = 3;
+--*--* +--*--* +--*
| | | | | |
* * * *--* * *--*
| | | | | |
+--*--* +--* +--*--*
Triangle starts:
====================================================================
n\k| 0 1 2 3 4 ... 7 ... 12 ... 17 ... 24
---|----------------------------------------------------------------
2 | 1;
3 | 1, 3;
4 | 1, 6, 17, 17, 6;
5 | 1, 10, 45, 167, 404, ... , 186;
6 | 1, 15, 100, 506, 2164, .......... , 1072;
7 | 1, 21, 196, 1316, 7066, .................. , 230440;
8 | 1, 28, 350, 3038, 20317, ............................ , 4638576;
-
# Using graphillion
from graphillion import GraphSet
import graphillion.tutorial as tl
def A333652(n):
universe = tl.grid(n - 1, n - 1)
GraphSet.set_universe(universe)
cycles = GraphSet.cycles().including(1).including(n)
return [cycles.len(2 * k).len() for k in range(n, n * n // 2 + 1)]
print([i for n in range(2, 8) for i in A333652(n)])
A333667
Triangle T(n,k), n >= 2, 0 <= k <= floor(n^2/2)-2*n+2, read by rows, where T(n,k) is the number of 2*(k+2*n-2)-cycles in the n X n grid graph which pass through NW and SE corners ((0,0),(n-1,n-1)).
Original entry on oeis.org
1, 3, 20, 16, 6, 175, 420, 562, 456, 186, 1764, 8064, 21224, 39500, 55376, 57248, 37586, 10260, 1072, 19404, 138600, 569768, 1717152, 4151965, 8371428, 14126846, 19364732, 20241450, 14759356, 6998166, 1927724, 230440
Offset: 2
T(3,0) = 3;
+--*--* +--*--* +--*
| | | | | |
*--* * * * * *--*
| | | | | |
*--+ *--*--+ *--*--+
Triangle starts:
=======================================================================
n\k| 0 1 2 ... 4 ... 8 ... 12 ... 18
---|-------------------------------------------------------------------
2 | 1;
3 | 3;
4 | 20, 16, 6;
5 | 175, 420, 562, ... , 186;
6 | 1764, 8064, 21224, .......... , 1072;
7 | 19404, 138600, 569768, .................. , 230440;
8 | 226512, 2265120, 12922446, ............................ , 4638576;
-
# Using graphillion
from graphillion import GraphSet
import graphillion.tutorial as tl
def A333667(n):
universe = tl.grid(n - 1, n - 1)
GraphSet.set_universe(universe)
cycles = GraphSet.cycles().including(1).including(n * n)
return [cycles.len(2 * k).len() for k in range(2 * n - 2, n * n // 2 + 1)]
print([i for n in range(2, 8) for i in A333667(n)])
A333668
Triangle T(n,k), n >= 2, 0 <= k <= floor(n^2/2)-2*n+2, read by rows, where T(n,k) is the number of 2*(k+2*n-2)-cycles in the n X n grid graph which pass through four corners ((0,0), (0,n-1), (n-1,n-1), (n-1,0)).
Original entry on oeis.org
1, 1, 1, 4, 6, 1, 12, 58, 156, 146, 1, 24, 244, 1416, 5435, 12976, 16654, 7108, 1072, 1, 40, 696, 7076, 47965, 236628, 873610, 2348664, 4335724, 4958224, 3407276, 1298704, 205792
Offset: 2
T(4,1) = 4;
+--*--*--+ +--*--*--+ +--*--*--+ +--* *--+
| | | | | | | | | |
*--* * * *--* * * * *--* *
| | | | | | | |
*--* * * *--* * *--* * * *
| | | | | | | | | |
+--*--*--+ +--*--*--+ +--* *--+ +--*--*--+
Triangle starts:
=================================================================
n\k| 0 1 2 3 4 ... 8 ... 12 ... 18
---|-------------------------------------------------------------
2 | 1;
3 | 1;
4 | 1, 4, 6;
5 | 1, 12, 58, 156, 146;
6 | 1, 24, 244, 1416, 5435, ... , 1072;
7 | 1, 40, 696, 7076, 47965, ........... , 205792;
8 | 1, 60, 1590, 24960, 263770, ..................... , 4638576;
-
# Using graphillion
from graphillion import GraphSet
import graphillion.tutorial as tl
def A333668(n):
universe = tl.grid(n - 1, n - 1)
GraphSet.set_universe(universe)
cycles = GraphSet.cycles()
for i in [1, n, n * (n - 1) + 1, n * n]:
cycles = cycles.including(i)
return [cycles.len(2 * k).len() for k in range(2 * n - 2, n * n // 2 + 1)]
print([i for n in range(2, 8) for i in A333668(n)])
A006772
Sum of spans of 2n-step polygons on square lattice.
Original entry on oeis.org
0, 1, 3, 14, 70, 370, 2028, 11452, 66172, 389416, 2326202, 14070268, 86010680, 530576780, 3298906810, 20653559846, 130099026600, 823979294284, 5244162058026, 33523117491920, 215150177410088, 1385839069134800, 8956173544332434, 58056703069399056, 377396656568011618, 2459614847765495754, 16068572108927106202
Offset: 1
From _Andrey Zabolotskiy_, Nov 09 2018: (Start)
There are no 2-step polygons (conventionally).
For n=2, the only 4-step polygon is a 1 X 1 square having span 1, so a(2)=1.
For n=3, the only 6-step polygon is a 2 X 1 domino which can be rotated 2 ways having spans 2 and 1, so a(3) = 2+1 = 3.
For n=4, there are the following 8-step polygons:
a 3 X 1 stick which can be rotated 2 ways having spans 3 and 1;
an L-tromino which can be rotated 4 ways, all having span 2;
a 2 X 2 square, having span 2.
So a(4) = 3 + 1 + 4*2 + 2 = 14.
For n=5, there are the following 10-step polygons:
a 4 X 1 stick which can be rotated 2 ways having spans 4 and 1;
an L-tetromino which can be rotated 2 ways with span 2 and 2 more ways with span 3, plus reflections;
a T-tetromino which can be rotated 2 ways with span 2 and 2 more ways with span 3;
an S-tetromino which can be rotated 2 ways having spans 3 and 2, plus reflections;
a 3 X 2 rectangle which can be rotated 2 ways having spans 3 and 2;
a 3 X 2 rectangle without one of its angular squares having same counts as L-tetromino.
So a(5) = 4 + 1 + 2 * 2*2*(2+3) + 2*(2+3) + 2*(3+2) + 3 + 2 = 70.
(End)
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
A333520
Triangle read by rows: T(n,k) is the number of self-avoiding paths of length 2*(n-1+k) connecting opposite corners in the n X n grid graph (0 <= k <= floor((n-1)^2/2), n >= 1).
Original entry on oeis.org
1, 2, 6, 4, 2, 20, 36, 48, 48, 32, 70, 224, 510, 956, 1586, 2224, 2106, 732, 104, 252, 1200, 3904, 10560, 25828, 58712, 121868, 217436, 300380, 280776, 170384, 61336, 10180, 924, 5940, 25186, 88084, 277706, 821480, 2309402, 6140040, 15130410, 33339900, 62692432, 96096244, 116826664, 110195700, 78154858, 39287872, 12396758, 1879252, 111712
Offset: 1
T(3,1) = 4;
S--* S--*--* S *--* S
| | | | | |
*--* *--* *--* * * *--*
| | | | | |
*--*--E *--E E *--* E
Triangle starts:
=======================================================
n\k| 0 1 2 3 4 ... 8 ... 12
---|---------------------------------------------------
1 | 1;
2 | 2;
3 | 6, 4, 2;
4 | 20, 36, 48, 48, 32;
5 | 70, 224, 510, 956, 1586, ... , 104;
6 | 252, 1200, 3904, 10560, ................. , 10180;
T(n,floor((n-1)^2/2)) gives
A121788(n-1).
T(2*n-1,2*(n-1)^2) gives
A001184(n-1).
-
# Using graphillion
from graphillion import GraphSet
import graphillion.tutorial as tl
def A333520(n):
if n == 1: return [1]
universe = tl.grid(n - 1, n - 1)
GraphSet.set_universe(universe)
start, goal = 1, n * n
paths = GraphSet.paths(start, goal)
return [paths.len(2 * (n - 1 + k)).len() for k in range((n - 1) ** 2 // 2 + 1)]
print([i for n in range(1, 8) for i in A333520(n)])
Showing 1-7 of 7 results.