A302345 Primes p such that the set { 1+2p, 1+6p, 1+14p, 1+42p, 1+86p, 1+258p, 1+602p, 1+1806p } does not contain any primes.
67, 97, 127, 163, 307, 317, 337, 349, 409, 521, 523, 547, 643, 709, 757, 811, 839, 857, 919, 967, 997, 1021, 1069, 1087, 1093, 1153, 1277, 1291, 1297, 1301, 1399, 1429, 1459, 1483, 1619, 1627, 1637, 1697, 1709, 1721, 1741, 1789, 1877, 1933, 1949, 1999, 2017, 2029, 2083, 2131, 2179, 2239, 2269, 2311, 2383, 2389, 2437, 2503, 2539, 2557, 2591, 2659, 2671, 2707, 2731
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- M. A. Alekseyev, J. M. Grau, A. M. Oller-Marcén, Computing solutions to the congruence 1^n + 2^n + ... + n^n == p (mod n), Discrete Applied Mathematics 286 (2020), 3-9. Preprint: arXiv:1602.02407 [math.NT], 2016.
Crossrefs
Programs
-
Mathematica
Select[Range[3000], PrimeQ[#] && AllTrue[{2, 6, 14, 42, 86, 258, 602, 1806}*# + 1, ! PrimeQ[#1] &] &] (* Amiram Eldar, Aug 09 2020 *)
-
PARI
{ is_A302345(p) = !vecmax( apply( x->ispseudoprime(1+x*p), 2*divisors(3*7*43) ) ); }
Comments