cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A302345 Primes p such that the set { 1+2p, 1+6p, 1+14p, 1+42p, 1+86p, 1+258p, 1+602p, 1+1806p } does not contain any primes.

Original entry on oeis.org

67, 97, 127, 163, 307, 317, 337, 349, 409, 521, 523, 547, 643, 709, 757, 811, 839, 857, 919, 967, 997, 1021, 1069, 1087, 1093, 1153, 1277, 1291, 1297, 1301, 1399, 1429, 1459, 1483, 1619, 1627, 1637, 1697, 1709, 1721, 1741, 1789, 1877, 1933, 1949, 1999, 2017, 2029, 2083, 2131, 2179, 2239, 2269, 2311, 2383, 2389, 2437, 2503, 2539, 2557, 2591, 2659, 2671, 2707, 2731
Offset: 1

Views

Author

Max Alekseyev, Apr 05 2018

Keywords

Comments

For each term p, the solutions n to the congruence 1^n + 2^n + ... + n^n == p (mod n) form a subset of A014117 U p*A014117. In particular, there are at most 10 solutions for each such p.
The coefficients { 2, 6, 14, 42, 86, 258, 602, 1806 } are the even divisors of 1806 = 2 * 3 * 7 * 43.

Crossrefs

Solutions to 1^n+2^n+...+n^n == m (mod n): A005408 (m=0), A014117 (m=1), A226960 (m=2), A226961 (m=3), A226962 (m=4), A226963 (m=5), A226964 (m=6), A226965 (m=7), A226966 (m=8), A226967 (m=9), A280041 (m=19), A280043 (m=43), A302343 (m=79), A302344 (m=193).

Programs

  • Mathematica
    Select[Range[3000], PrimeQ[#] && AllTrue[{2, 6, 14, 42, 86, 258, 602, 1806}*# + 1, ! PrimeQ[#1] &] &] (* Amiram Eldar, Aug 09 2020 *)
  • PARI
    { is_A302345(p) = !vecmax( apply( x->ispseudoprime(1+x*p), 2*divisors(3*7*43) ) ); }