A302343
Solutions to the congruence 1^n + 2^n + ... + n^n == 79 (mod n).
Original entry on oeis.org
1, 2, 6, 79, 158, 474, 3318, 142674
Offset: 1
- M. A. Alekseyev, J. M. Grau, A. M. Oller-Marcen. Computing solutions to the congruence 1^n + 2^n + ... + n^n == p (mod n). Discrete Applied Mathematics, 2018. doi:10.1016/j.dam.2018.05.022 arXiv:1602.02407 [math.NT]
Solutions to 1^n+2^n+...+n^n == m (mod n):
A005408 (m=0),
A014117 (m=1),
A226960 (m=2),
A226961 (m=3),
A226962 (m=4),
A226963 (m=5),
A226964 (m=6),
A226965 (m=7),
A226966 (m=8),
A226967 (m=9),
A280041 (m=19),
A280043 (m=43), this sequence (m=79),
A302344 (m=193).
A302344
Solutions to the congruence 1^n + 2^n + ... + n^n == 193 (mod n).
Original entry on oeis.org
1, 2, 6, 193, 386, 1158, 8106, 348558
Offset: 1
- M. A. Alekseyev, J. M. Grau, A. M. Oller-Marcen. Computing solutions to the congruence 1^n + 2^n + ... + n^n == p (mod n). Discrete Applied Mathematics, 2018. doi:10.1016/j.dam.2018.05.022 arXiv:1602.02407 [math.NT]
Solutions to 1^n+2^n+...+n^n == m (mod n):
A005408 (m=0),
A014117 (m=1),
A226960 (m=2),
A226961 (m=3),
A226962 (m=4),
A226963 (m=5),
A226964 (m=6),
A226965 (m=7),
A226966 (m=8),
A226967 (m=9),
A280041 (m=19),
A280043 (m=43),
A302343 (m=79), this sequence (m=193).
Showing 1-2 of 2 results.
Comments