cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A302352 a(n) = Sum_{k=0..n} k^4*binomial(2*n-k,n).

Original entry on oeis.org

0, 1, 19, 155, 936, 4884, 23465, 107107, 472600, 2036838, 8631206, 36119798, 149724940, 616104450, 2520629685, 10265200035, 41650094640, 168481778790, 679847488650, 2737640364810, 11005139655744, 44176226269728, 177114113623194, 709364594864910, 2838599638596176, 11350436081373340
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 06 2018

Keywords

Comments

Main diagonal of iterated partial sums array of fourth powers (starting with the first partial sums). For nonnegative integers see A002054, for squares see A265612, for cubes see A293550.

Crossrefs

Programs

  • Mathematica
    Table[Sum[k^4 Binomial[2 n - k, n], {k, 0, n}], {n, 0, 25}]
    Table[SeriesCoefficient[x (1 + 11 x + 11 x^2 + x^3)/(1 - x)^(n + 6), {x, 0, n}], {n, 0, 25}]
    Table[2^(2 n + 1) n (75 n^3 + 52 n^2 - 3 n - 4) Gamma[n + 3/2]/(Sqrt[Pi] Gamma[n + 6]), {n, 0, 25}]
    CoefficientList[Series[(24 - 180 x + 410 x^2 - 285 x^3 + 31 x^4 + Sqrt[1 - 4 x] (-24 + 132 x - 194 x^2 + 65 x^3 - x^4))/(2 Sqrt[1 - 4 x] x^5), {x, 0, 25}], x]
    CoefficientList[Series[E^(2 x) (-576 + 360 x - 244 x^2 + 75 x^3) BesselI[0, 2 x]/x^3 + E^(2 x) (576 - 360 x + 532 x^2 - 255 x^3 + 75 x^4) BesselI[1, 2 x]/x^4, {x, 0, 25}], x]* Range[0, 25]!
  • PARI
    a(n) = sum(k=0, n, k^4*binomial(2*n-k,n)); \\ Michel Marcus, Apr 07 2018

Formula

a(n) = [x^n] x*(1 + 11*x + 11*x^2 + x^3)/(1 - x)^(n+6).
a(n) = 2^(2*n+1)*n*(75*n^3 + 52*n^2 - 3*n - 4)*Gamma(n+3/2)/(sqrt(Pi)*Gamma(n+6)).
a(n) ~ 75*2^(2*n+1)/sqrt(Pi*n).