A302396 Number of families of 4-subsets of an n-set that cover every element.
1, 0, 0, 0, 1, 26, 32596, 34359509614, 1180591620442534312297, 85070591730234605240519066638188154620, 1645504557321206042154968331851433202636630333819989444275003856
Offset: 0
Examples
For n=5 all families with at least two 4-sets will cover every element.
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..18
Programs
-
GAP
Flat(List([0..10],n->Sum([0..n],k->(-1)^k*Binomial(n,k)*2^Binomial(n-k,4)))); # Muniru A Asiru, Apr 07 2018
-
Maple
seq(add((-1)^k * binomial(n,k) * 2^binomial(n-k,4), k = 0..n), n=0..12)
-
Mathematica
Array[Sum[(-1)^k*Binomial[#, k] 2^Binomial[# - k, 4], {k, 0, #}] &, 11, 0] (* Michael De Vlieger, Apr 07 2018 *)
-
PARI
a(n) = sum(k=0, n, (-1)^k*binomial(n,k)*2^binomial(n-k,4)); \\ Michel Marcus, Apr 07 2018
Formula
a(n) = Sum_{k=0..n} (-1)^k * binomial(n,k) * 2^binomial(n-k,4).
Comments