A302452 a(n) = coefficient of x^(2*n-1) in the n-th iteration (n-fold self-composition) of e.g.f. sinh(x).
1, 2, 33, 2160, 368145, 130426016, 83303826249, 87104014381056, 139088689115885505, 321859857651846029824, 1036109938469605247521009, 4490275483028481600517832704, 25503692273369769781221175069521, 185636732310716855091866841134243840, 1699077450890747555020338066545506541145
Offset: 1
Keywords
Examples
The initial coefficients of successive iterations of e.g.f. A(x) = sinh(x) (odd powers only) are as follows: n = 1: (1), 1, 1, 1, 1, ... e.g.f. A(x) n = 2: 1, (2), 12, 128, 1872, ... e.g.f. A(A(x)) n = 3: 1, 3, (33), 731, 25857, ... e.g.f. A(A(A(x))) n = 4: 1, 4, 64, (2160) 121600, ... e.g.f. A(A(A(A(x)))) n = 5: 1, 5, 105, 4765, (368145), ... e.g.f. A(A(A(A(A(x))))) ... More explicitly, the successive iterations of e.g.f. A(x) = sinh(x) begin: sinh(x) = x/1! + x^3/3! + x^5/5! + x^7/7! + x^9/9! + ... sinh(sinh(x)) = x/1! + 2*x^3/3! + 12*x^5/5! + 128*x^7/7! + 1872*x^9/9! + ... sinh(sinh(sinh(x))) = x/1! + 3*x^3/3! + 33*x^5/5! + 731*x^7/7! + 25857*x^9/9! + ... sinh(sinh(sinh(sinh(x)))) = x/1! + 4*x^3/3! + 64*x^5/5! + 2160*x^7/7! + 121600*x^9/9! + ... sinh(sinh(sinh(sinh(sinh(x))))) = x/1! + 5*x^3/3! + 105*x^5/5! + 4765*x^7/7! + 368145*x^9/9! + ...
Links
- N. J. A. Sloane, Transforms
Programs
-
Mathematica
Table[(2 n - 1)! SeriesCoefficient[Nest[Function[x, Sinh[x]], x, n], {x, 0, 2 n - 1}], {n, 15}]
Comments