A302494 Products of distinct primes of squarefree index.
1, 2, 3, 5, 6, 10, 11, 13, 15, 17, 22, 26, 29, 30, 31, 33, 34, 39, 41, 43, 47, 51, 55, 58, 59, 62, 65, 66, 67, 73, 78, 79, 82, 83, 85, 86, 87, 93, 94, 101, 102, 109, 110, 113, 118, 123, 127, 129, 130, 134, 137, 139, 141, 143, 145, 146, 149, 155, 157, 158, 163
Offset: 1
Keywords
Examples
Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of set systems. 01: {} 02: {{}} 03: {{1}} 05: {{2}} 06: {{},{1}} 10: {{},{2}} 11: {{3}} 13: {{1,2}} 15: {{1},{2}} 17: {{4}} 22: {{},{3}} 26: {{},{1,2}} 29: {{1,3}} 30: {{},{1},{2}} 31: {{5}} 33: {{1},{3}} 34: {{},{4}} 39: {{1},{1,2}}
Crossrefs
Programs
-
Mathematica
Select[Range[100],Or[#===1,SquareFreeQ[#]&&And@@SquareFreeQ/@PrimePi/@FactorInteger[#][[All,1]]]&]
-
PARI
is(n) = if(bigomega(n)!=omega(n), return(0), my(f=factor(n)[, 1]~); for(k=1, #f, if(!issquarefree(primepi(f[k])) && primepi(f[k])!=1, return(0)))); 1 \\ Felix Fröhlich, Apr 10 2018
Comments