A302498 Numbers that are a power of a prime number whose prime index is itself a power of a prime number.
1, 2, 3, 4, 5, 7, 8, 9, 11, 16, 17, 19, 23, 25, 27, 31, 32, 41, 49, 53, 59, 64, 67, 81, 83, 97, 103, 109, 121, 125, 127, 128, 131, 157, 179, 191, 211, 227, 241, 243, 256, 277, 283, 289, 311, 331, 343, 353, 361, 367, 401, 419, 431, 461, 509, 512, 529, 547, 563
Offset: 1
Keywords
Examples
49 is in the sequence because 49 = prime(prime(1)^2)^2. Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of constant constant-multiset multisystems. 01: {} 02: {{}} 03: {{1}} 04: {{},{}} 05: {{2}} 07: {{1,1}} 08: {{},{},{}} 09: {{1},{1}} 11: {{3}} 16: {{},{},{},{}} 17: {{4}} 19: {{1,1,1}} 23: {{2,2}} 25: {{2},{2}} 27: {{1},{1},{1}} 31: {{5}} 32: {{},{},{},{},{}} 41: {{6}} 49: {{1,1},{1,1}} 53: {{1,1,1,1}} 59: {{7}} 64: {{},{},{},{},{},{}}
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Mathematica
Select[Range[100],Or[#===1,PrimePowerQ[#]&&And@@(Or[#===1,PrimePowerQ[#]]&/@PrimePi/@FactorInteger[#][[All,1]])]&]
-
PARI
ok(n)={my(p); n == 1 || (isprimepower(n, &p) && (p == 2 || isprimepower(primepi(p))))} \\ Andrew Howroyd, Aug 26 2018
Comments