A302506 Number of total dominating sets in the n-pan graph.
2, 3, 7, 12, 17, 27, 46, 75, 119, 192, 313, 507, 818, 1323, 2143, 3468, 5609, 9075, 14686, 23763, 38447, 62208, 100657, 162867, 263522, 426387, 689911, 1116300, 1806209, 2922507, 4728718, 7651227, 12379943, 20031168, 32411113, 52442283, 84853394, 137295675
Offset: 1
Links
- Eric Weisstein's World of Mathematics, Pan Graph
- Eric Weisstein's World of Mathematics, Total Dominating Set
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,1).
Crossrefs
Cf. A000032.
Programs
-
Mathematica
Table[(3 LucasL[n + 2] + 6 Cos[n Pi/2] - 2 Sin[n Pi/2])/5, {n, 20}] LinearRecurrence[{1, 0, 1, 1}, {2, 3, 7, 12}, 20] CoefficientList[Series[(-2 - x - 4 x^2 - 3 x^3)/(-1 + x + x^3 + x^4), {x, 0, 20}], x]
Formula
5*a(n) = 3*A000032(n+2) + 6*cos(n*Pi/2) - 2*sin(n*Pi/2).
a(n) = a(n-1) + a(n-2) + a(n-3) for n > 3.
G.f.: -x*(2 + x + 4*x^2 + 3*x^3)/((1 + x^2)*(x^2 + x - 1)).
E.g.f.: (6*cos(x) - 2*sin(x) - 15 + 3*exp(x/2)*(3*cosh(sqrt(5)*x/2) + sqrt(5)*sinh(sqrt(5)*x/2)))/5. - Stefano Spezia, Jan 03 2023
Comments