cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A302506 Number of total dominating sets in the n-pan graph.

Original entry on oeis.org

2, 3, 7, 12, 17, 27, 46, 75, 119, 192, 313, 507, 818, 1323, 2143, 3468, 5609, 9075, 14686, 23763, 38447, 62208, 100657, 162867, 263522, 426387, 689911, 1116300, 1806209, 2922507, 4728718, 7651227, 12379943, 20031168, 32411113, 52442283, 84853394, 137295675
Offset: 1

Views

Author

Eric W. Weisstein, Apr 09 2018

Keywords

Comments

Extended to a(1)-a(2) using the formula/recurrence.

Crossrefs

Cf. A000032.

Programs

  • Mathematica
    Table[(3 LucasL[n + 2] + 6 Cos[n Pi/2] - 2 Sin[n Pi/2])/5, {n, 20}]
    LinearRecurrence[{1, 0, 1, 1}, {2, 3, 7, 12}, 20]
    CoefficientList[Series[(-2 - x - 4 x^2 - 3 x^3)/(-1 + x + x^3 + x^4), {x, 0, 20}], x]

Formula

5*a(n) = 3*A000032(n+2) + 6*cos(n*Pi/2) - 2*sin(n*Pi/2).
a(n) = a(n-1) + a(n-2) + a(n-3) for n > 3.
G.f.: -x*(2 + x + 4*x^2 + 3*x^3)/((1 + x^2)*(x^2 + x - 1)).
E.g.f.: (6*cos(x) - 2*sin(x) - 15 + 3*exp(x/2)*(3*cosh(sqrt(5)*x/2) + sqrt(5)*sinh(sqrt(5)*x/2)))/5. - Stefano Spezia, Jan 03 2023