cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A302537 a(n) = (n^2 + 13*n + 2)/2.

Original entry on oeis.org

1, 8, 16, 25, 35, 46, 58, 71, 85, 100, 116, 133, 151, 170, 190, 211, 233, 256, 280, 305, 331, 358, 386, 415, 445, 476, 508, 541, 575, 610, 646, 683, 721, 760, 800, 841, 883, 926, 970, 1015, 1061, 1108, 1156, 1205, 1255, 1306, 1358, 1411, 1465, 1520, 1576
Offset: 0

Views

Author

Keywords

Comments

Binomial transform of [1, 7, 1, 0, 0, 0, ...].
Numbers m > 0 such that 8*m + 161 is a square.

Examples

			Illustration of initial terms (by the formula a(n) = A052905(n) + 3*n):
.                                                                    o
.                                                                  o o
.                                                    o           o o o
.                                                  o o         o o o o
.                                      o         o o o       o o o o o
.                                    o o       o o o o     o o o o o o
.                          o       o o o     o o o o o   o . . . . . o
.                        o o     o o o o   o . . . . o   o . . . . . o
.                o     o o o   o . . . o   o . . . . o   o . . . . . o
.              o o   o . . o   o . . . o   o . . . . o   o . . . . . o
.        o   o . o   o . . o   o . . . o   o . . . . o   o . . . . . o
.      o o   o . o   o . . o   o . . . o   o . . . . o   o . . . . . o
.  o   o o   o o o   o o o o   o o o o o   o o o o o o   o o o o o o o
.        o     o o     o o o     o o o o     o o o o o     o o o o o o
.        o     o o     o o o     o o o o     o o o o o     o o o o o o
.        o     o o     o o o     o o o o     o o o o o     o o o o o o
----------------------------------------------------------------------
.  1     8      16        25          35            46              58
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics: A Foundation for Computer Science, Addison-Wesley, 1994.

Crossrefs

Sequences whose n-th terms are of the form binomial(n, 2) + n*k + 1:
A152947 (k = 0); A000124 (k = 1); A000217 (k = 2); A034856 (k = 3);
A052905 (k = 4); A051936 (k = 5); A246172 (k = 6).

Programs

  • Magma
    A302537:= func< n | ((n+1)^2 +12*n +1)/2 >;
    [A302537(n): n in [0..50]]; // G. C. Greubel, Jan 21 2025
    
  • Maple
    a := n -> (n^2 + 13*n + 2)/2;
    seq(a(n), n = 0 .. 100);
  • Mathematica
    Table[(n^2 + 13 n + 2)/2, {n, 0, 100}]
    CoefficientList[ Series[(5x^2 - 5x - 1)/(x - 1)^3, {x, 0, 50}], x] (* or *)
    LinearRecurrence[{3, -3, 1}, {1, 8, 16}, 51] (* Robert G. Wilson v, May 19 2018 *)
  • Maxima
    makelist((n^2 + 13*n + 2)/2, n, 0, 100);
    
  • PARI
    a(n) = (n^2 + 13*n + 2)/2; \\ Altug Alkan, Apr 12 2018
    
  • Python
    def A302537(n): return (n**2 + 13*n + 2)//2
    print([A302537(n) for n in range(51)]) # G. C. Greubel, Jan 21 2025

Formula

a(n) = binomial(n + 1, 2) + 6*n + 1 = binomial(n, 2) + 7*n + 1.
a(n) = a(n-1) + n + 6.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 3, where a(0) = 1, a(1) = 8 and a(2) = 16.
a(n) = 2*a(n-1) - a(n-2) + 1.
a(n) = A004120(n+1) for n > 1.
a(n) = A056119(n) + 1.
a(n) = A152947(n+1) + A008589(n).
a(n) = A060544(n+1) - A002939(n).
a(n) = A000578(n+1) - A162261(n) for n > 0.
G.f.: (1 + 5*x - 5*x^2)/(1 - x)^3.
E.g.f.: (1/2)*(2 + 14*x + x^2)*exp(x).
Sum_{n>=0} 1/a(n) = 24097/45220 + 2*Pi*tan(sqrt(161)*Pi/2) / sqrt(161) = 1.4630922534498496... - Vaclav Kotesovec, Apr 11 2018