A302537 a(n) = (n^2 + 13*n + 2)/2.
1, 8, 16, 25, 35, 46, 58, 71, 85, 100, 116, 133, 151, 170, 190, 211, 233, 256, 280, 305, 331, 358, 386, 415, 445, 476, 508, 541, 575, 610, 646, 683, 721, 760, 800, 841, 883, 926, 970, 1015, 1061, 1108, 1156, 1205, 1255, 1306, 1358, 1411, 1465, 1520, 1576
Offset: 0
Examples
Illustration of initial terms (by the formula a(n) = A052905(n) + 3*n): . o . o o . o o o o . o o o o o o . o o o o o o o o o . o o o o o o o o o o o o . o o o o o o o o o o . . . . . o . o o o o o o o . . . . o o . . . . . o . o o o o o . . . o o . . . . o o . . . . . o . o o o . . o o . . . o o . . . . o o . . . . . o . o o . o o . . o o . . . o o . . . . o o . . . . . o . o o o . o o . . o o . . . o o . . . . o o . . . . . o . o o o o o o o o o o o o o o o o o o o o o o o o o o o o . o o o o o o o o o o o o o o o o o o o o o . o o o o o o o o o o o o o o o o o o o o o . o o o o o o o o o o o o o o o o o o o o o ---------------------------------------------------------------------- . 1 8 16 25 35 46 58
References
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics: A Foundation for Computer Science, Addison-Wesley, 1994.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Magma
A302537:= func< n | ((n+1)^2 +12*n +1)/2 >; [A302537(n): n in [0..50]]; // G. C. Greubel, Jan 21 2025
-
Maple
a := n -> (n^2 + 13*n + 2)/2; seq(a(n), n = 0 .. 100);
-
Mathematica
Table[(n^2 + 13 n + 2)/2, {n, 0, 100}] CoefficientList[ Series[(5x^2 - 5x - 1)/(x - 1)^3, {x, 0, 50}], x] (* or *) LinearRecurrence[{3, -3, 1}, {1, 8, 16}, 51] (* Robert G. Wilson v, May 19 2018 *)
-
Maxima
makelist((n^2 + 13*n + 2)/2, n, 0, 100);
-
PARI
a(n) = (n^2 + 13*n + 2)/2; \\ Altug Alkan, Apr 12 2018
-
Python
def A302537(n): return (n**2 + 13*n + 2)//2 print([A302537(n) for n in range(51)]) # G. C. Greubel, Jan 21 2025
Formula
a(n) = binomial(n + 1, 2) + 6*n + 1 = binomial(n, 2) + 7*n + 1.
a(n) = a(n-1) + n + 6.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 3, where a(0) = 1, a(1) = 8 and a(2) = 16.
a(n) = 2*a(n-1) - a(n-2) + 1.
a(n) = A004120(n+1) for n > 1.
a(n) = A056119(n) + 1.
G.f.: (1 + 5*x - 5*x^2)/(1 - x)^3.
E.g.f.: (1/2)*(2 + 14*x + x^2)*exp(x).
Sum_{n>=0} 1/a(n) = 24097/45220 + 2*Pi*tan(sqrt(161)*Pi/2) / sqrt(161) = 1.4630922534498496... - Vaclav Kotesovec, Apr 11 2018
Comments