A341587
E.g.f.: log(1 + log(1 - x))^2 / 2.
Original entry on oeis.org
1, 6, 40, 315, 2908, 30989, 375611, 5112570, 77305024, 1286640410, 23387713930, 461187042992, 9808283703684, 223833267479764, 5456669750439788, 141540592345674800, 3892707724320135616, 113153294901088030320, 3466501398608272647984, 111636571036702743967104, 3770483138507706753943584
Offset: 2
-
nmax = 22; CoefficientList[Series[Log[1 + Log[1 - x]]^2/2, {x, 0, nmax}], x] Range[0, nmax]! // Drop[#, 2] &
Table[Sum[Abs[StirlingS1[n, k] StirlingS1[k, 2]], {k, 2, n}], {n, 2, 22}]
A302547
Expansion of e.g.f. -log(1 - log(1 + x))/(1 - log(1 + x)).
Original entry on oeis.org
0, 1, 2, 4, 11, 33, 131, 516, 2810, 12934, 97870, 447940, 5308112, 16394116, 450505844, -315178912, 60774618672, -394330113648, 12662225550288, -157622647720032, 3766647294946944, -64679214198647520, 1475157821754785184, -30431206030329719424, 719032203373502252160
Offset: 0
E.g.f.: A(x) = x + 2*x^2/2! + 4*x^3/3! + 11*x^4/4! + 33*x^5/5! + 131*x^6/6! + ...
-
H:= proc(n) H(n):= 1/n +`if`(n=1, 0, H(n-1)) end:
a:= n-> add(Stirling1(n, k)*H(k)*k!, k=1..n):
seq(a(n), n=0..27); # Alois P. Heinz, Jun 21 2018
-
nmax = 24; CoefficientList[Series[-Log[1 - Log[1 + x]]/(1 - Log[1 + x]), {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[StirlingS1[n, k] HarmonicNumber[k] k!, {k, 0, n}], {n, 0, 24}]
A341575
E.g.f.: log(1 - log(1 - x))^2 / 2.
Original entry on oeis.org
1, 0, 4, 5, 58, 217, 2035, 13470, 134164, 1243770, 14129410, 164244808, 2151576620, 29671566836, 444758323628, 7055358559376, 119546765395744, 2139179551573104, 40486788832168944, 805969129348431936, 16860672502118423136, 369459637224850523808, 8467140450141232328160
Offset: 2
-
nmax = 24; CoefficientList[Series[Log[1 - Log[1 - x]]^2/2, {x, 0, nmax}], x] Range[0, nmax]! // Drop[#, 2] &
Table[Sum[Abs[StirlingS1[n, k]] StirlingS1[k, 2], {k, 2, n}], {n, 2, 24}]
A354685
a(n) = n! * Sum_{k=1..n} (-1)^(n-k) * Stirling1(n,k) * H(k), where H(k) is the k-th harmonic number.
Original entry on oeis.org
0, 1, 5, 50, 854, 22354, 833244, 41974176, 2748169584, 226916044848, 23069499189120, 2831994888419520, 413051278946186880, 70608112721914654080, 13982696139441640584960, 3175762393024883382067200, 820007850688478572529203200, 238863690100874514528150681600
Offset: 0
-
Table[n! Sum[(-1)^(n - k) StirlingS1[n, k] HarmonicNumber[k], {k, 1, n}], {n, 0, 17}]
nmax = 17; CoefficientList[Series[Sum[HarmonicNumber[k] (-Log[1 - x])^k/k!, {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!^2
Showing 1-4 of 4 results.