cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A341587 E.g.f.: log(1 + log(1 - x))^2 / 2.

Original entry on oeis.org

1, 6, 40, 315, 2908, 30989, 375611, 5112570, 77305024, 1286640410, 23387713930, 461187042992, 9808283703684, 223833267479764, 5456669750439788, 141540592345674800, 3892707724320135616, 113153294901088030320, 3466501398608272647984, 111636571036702743967104, 3770483138507706753943584
Offset: 2

Views

Author

Ilya Gutkovskiy, Feb 15 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 22; CoefficientList[Series[Log[1 + Log[1 - x]]^2/2, {x, 0, nmax}], x] Range[0, nmax]! // Drop[#, 2] &
    Table[Sum[Abs[StirlingS1[n, k] StirlingS1[k, 2]], {k, 2, n}], {n, 2, 22}]

Formula

a(n) = Sum_{k=2..n} |Stirling1(n, k) * Stirling1(k, 2)|.
a(n) = Sum_{k=2..n} |Stirling1(n, k)| * (k-1)! * H(k-1), where H(k) is the k-th harmonic number.
a(n) = Sum_{k=1..n-1} binomial(n-1, k) * A003713(k) * A003713(n-k).
a(n) = A052822(n) / 2.
a(n) ~ sqrt(2*Pi) * log(n) * n^(n - 1/2) / (exp(1) - 1)^n * (1 + (gamma - log(exp(1) - 1))/log(n)), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Feb 15 2021

A302547 Expansion of e.g.f. -log(1 - log(1 + x))/(1 - log(1 + x)).

Original entry on oeis.org

0, 1, 2, 4, 11, 33, 131, 516, 2810, 12934, 97870, 447940, 5308112, 16394116, 450505844, -315178912, 60774618672, -394330113648, 12662225550288, -157622647720032, 3766647294946944, -64679214198647520, 1475157821754785184, -30431206030329719424, 719032203373502252160
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 20 2018

Keywords

Examples

			E.g.f.: A(x) = x + 2*x^2/2! + 4*x^3/3! + 11*x^4/4! + 33*x^5/5! + 131*x^6/6! + ...
		

Crossrefs

Programs

  • Maple
    H:= proc(n) H(n):= 1/n +`if`(n=1, 0, H(n-1)) end:
    a:= n-> add(Stirling1(n, k)*H(k)*k!, k=1..n):
    seq(a(n), n=0..27);  # Alois P. Heinz, Jun 21 2018
  • Mathematica
    nmax = 24; CoefficientList[Series[-Log[1 - Log[1 + x]]/(1 - Log[1 + x]), {x, 0, nmax}], x] Range[0, nmax]!
    Table[Sum[StirlingS1[n, k] HarmonicNumber[k] k!, {k, 0, n}], {n, 0, 24}]

Formula

a(n) = Sum_{k=1..n} Stirling1(n,k)*H(k)*k!, where H(k) is the k-th harmonic number.

A341575 E.g.f.: log(1 - log(1 - x))^2 / 2.

Original entry on oeis.org

1, 0, 4, 5, 58, 217, 2035, 13470, 134164, 1243770, 14129410, 164244808, 2151576620, 29671566836, 444758323628, 7055358559376, 119546765395744, 2139179551573104, 40486788832168944, 805969129348431936, 16860672502118423136, 369459637224850523808, 8467140450141232328160
Offset: 2

Views

Author

Ilya Gutkovskiy, Feb 15 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 24; CoefficientList[Series[Log[1 - Log[1 - x]]^2/2, {x, 0, nmax}], x] Range[0, nmax]! // Drop[#, 2] &
    Table[Sum[Abs[StirlingS1[n, k]] StirlingS1[k, 2], {k, 2, n}], {n, 2, 24}]

Formula

a(n) = Sum_{k=2..n} |Stirling1(n, k)| * Stirling1(k, 2).
a(n) = (-1)^n * Sum_{k=2..n} Stirling1(n, k) * (k-1)! * H(k-1), where H(k) is the k-th harmonic number.

A354685 a(n) = n! * Sum_{k=1..n} (-1)^(n-k) * Stirling1(n,k) * H(k), where H(k) is the k-th harmonic number.

Original entry on oeis.org

0, 1, 5, 50, 854, 22354, 833244, 41974176, 2748169584, 226916044848, 23069499189120, 2831994888419520, 413051278946186880, 70608112721914654080, 13982696139441640584960, 3175762393024883382067200, 820007850688478572529203200, 238863690100874514528150681600
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 03 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! Sum[(-1)^(n - k) StirlingS1[n, k] HarmonicNumber[k], {k, 1, n}], {n, 0, 17}]
    nmax = 17; CoefficientList[Series[Sum[HarmonicNumber[k] (-Log[1 - x])^k/k!, {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!^2

Formula

Sum_{n>=0} a(n) * x^n / n!^2 = Sum_{n>=1} H(n) * (-log(1-x))^n / n!.
a(n) ~ n!^2 * (log(log(n)) + gamma + 1/log(n)), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Jun 03 2022
Showing 1-4 of 4 results.