A302562 Partial sums of A092181.
1, 25, 178, 722, 2147, 5243, 11172, 21540, 38469, 64669, 103510, 159094, 236327, 340991, 479816, 660552, 892041, 1184289, 1548538, 1997338, 2544619, 3205763, 3997676, 4938860, 6049485, 7351461, 8868510, 10626238, 12652207, 14976007, 17629328, 20646032
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
Crossrefs
Cf. A092181.
Programs
-
Mathematica
Table[n*(7 - 10*n^2 + 15*n^3 + 18*n^4)/30, {n, 40}] (* Wesley Ivan Hurt, Oct 30 2022 *)
-
PARI
Vec(x*(1 + 19*x + 43*x^2 + 9*x^3) / (1 - x)^6 + O(x^40)) \\ Colin Barker, Aug 15 2018
-
PARI
a(n) = (n*(7 - 10*n^2 + 15*n^3 + 18*n^4)) / 30 \\ Colin Barker, Aug 15 2018
Formula
a(n) = Sum_{k=1..n} A092181(k).
From Colin Barker, Aug 15 2018: (Start)
G.f.: x*(1 + 19*x + 43*x^2 + 9*x^3) / (1 - x)^6.
a(n) = n*(7 - 10*n^2 + 15*n^3 + 18*n^4) / 30.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>6.
(End)
Comments