cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A302562 Partial sums of A092181.

Original entry on oeis.org

1, 25, 178, 722, 2147, 5243, 11172, 21540, 38469, 64669, 103510, 159094, 236327, 340991, 479816, 660552, 892041, 1184289, 1548538, 1997338, 2544619, 3205763, 3997676, 4938860, 6049485, 7351461, 8868510, 10626238, 12652207, 14976007, 17629328, 20646032
Offset: 1

Views

Author

Keywords

Comments

Geometrically, the partial sums of A092181 may be interpreted as 5-dimensional icositetrachoronal hyperpyramidal numbers. The icositetrachoron is a convex regular 4-D polytope with Schlaefli symbol {3,4,3}.

Crossrefs

Cf. A092181.

Programs

  • Mathematica
    Table[n*(7 - 10*n^2 + 15*n^3 + 18*n^4)/30, {n, 40}] (* Wesley Ivan Hurt, Oct 30 2022 *)
  • PARI
    Vec(x*(1 + 19*x + 43*x^2 + 9*x^3) / (1 - x)^6 + O(x^40)) \\ Colin Barker, Aug 15 2018
    
  • PARI
    a(n) = (n*(7 - 10*n^2 + 15*n^3 + 18*n^4)) / 30 \\ Colin Barker, Aug 15 2018

Formula

a(n) = Sum_{k=1..n} A092181(k).
From Colin Barker, Aug 15 2018: (Start)
G.f.: x*(1 + 19*x + 43*x^2 + 9*x^3) / (1 - x)^6.
a(n) = n*(7 - 10*n^2 + 15*n^3 + 18*n^4) / 30.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>6.
(End)