A302567 a(n) is the number of primes less than the n-th prime that divide the sum of primes up to the n-th prime.
0, 0, 1, 0, 2, 0, 1, 2, 2, 1, 2, 0, 3, 0, 2, 1, 3, 1, 1, 1, 1, 1, 3, 1, 3, 2, 2, 1, 3, 2, 3, 1, 3, 1, 1, 1, 3, 2, 3, 2, 3, 1, 3, 1, 3, 1, 2, 2, 3, 3, 3, 2, 4, 1, 1, 3, 4, 2, 1, 0, 2, 1, 2, 0, 1, 2, 2, 3, 2, 3, 3, 1, 3, 1, 1, 2, 4, 1, 3, 3, 1, 1, 1, 4, 3, 2, 4, 3, 3, 3, 4, 1, 1, 2, 1, 0, 2, 3, 2, 0, 2, 0, 4, 1, 4
Offset: 1
Keywords
Examples
a(13)=3 because the 13th prime is 41 and the sum of primes up to 41 is 238, which has 3 distinct prime factors less than 41. a(20)=1 because the 20th prime is 71 and the sum of primes up to 71 is 639 = 7*71, which has only 1 distinct prime factor less than 71. - _Jon E. Schoenfield_, Apr 11 2018
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Caldwell and Honaker, Prime Curios!: 163117
Programs
-
Maple
s:= proc(n) option remember; `if`(n<1, 0, ithprime(n)+s(n-1)) end: a:= n-> nops(select(x-> x < ithprime(n), numtheory[factorset](s(n)))): seq(a(n), n=1..100); # Alois P. Heinz, Apr 11 2018
-
Mathematica
a[n_] := (S = Total[P = Prime[Range[n]]]; Count[P, p_ /; Divisible[S, p]]); Array[a, 100] (* Jean-François Alcover, Apr 30 2019 *)
-
PARI
a(n) = #select(x->(x < prime(n)), factor(sum(k=1, n, prime(k)))[,1]); \\ Michel Marcus, Apr 11 2018
Formula
a(n) = A105783(n) - 1 if n is in A024011; otherwise, a(n) = A105783(n). - Jon E. Schoenfield, Apr 11 2018
Comments