A302569 Numbers that are either prime or whose prime indices are pairwise coprime. Heinz numbers of integer partitions with pairwise coprime parts.
2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 22, 23, 24, 26, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 40, 41, 43, 44, 46, 47, 48, 51, 52, 53, 55, 56, 58, 59, 60, 61, 62, 64, 66, 67, 68, 69, 70, 71, 73, 74, 76, 77, 79, 80, 82, 83, 85, 86, 88, 89
Offset: 1
Keywords
Examples
Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of multiset systems. 02: {{}} 03: {{1}} 04: {{},{}} 05: {{2}} 06: {{},{1}} 07: {{1,1}} 08: {{},{},{}} 10: {{},{2}} 11: {{3}} 12: {{},{},{1}} 13: {{1,2}} 14: {{},{1,1}} 15: {{1},{2}} 16: {{},{},{},{}} 17: {{4}} 19: {{1,1,1}} 20: {{},{},{2}} 22: {{},{3}} 23: {{2,2}} 24: {{},{},{},{1}} 26: {{},{1,2}} 28: {{},{},{1,1}} 29: {{1,3}} 30: {{},{1},{2}} 31: {{5}} 32: {{},{},{},{},{}}
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Select[Range[200],Or[PrimeQ[#],CoprimeQ@@primeMS[#]]&]
-
PARI
is(n)=if(n<9, return(n>1)); n>>=valuation(n,2); if(n<9, return(1)); my(f=factor(n)); if(vecmax(f[,2])>1, return(0)); if(#f~==1, return(1)); my(v=apply(primepi, f[,1]),P=vecprod(v)); for(i=1,#v, if(gcd(v[i],P/v[i])>1, return(0))); 1 \\ Charles R Greathouse IV, Nov 11 2021
Comments