A302591 One, powers of 2, and prime numbers of squarefree index.
1, 2, 3, 4, 5, 8, 11, 13, 16, 17, 29, 31, 32, 41, 43, 47, 59, 64, 67, 73, 79, 83, 101, 109, 113, 127, 128, 137, 139, 149, 157, 163, 167, 179, 181, 191, 199, 211, 233, 241, 256, 257, 269, 271, 277, 283, 293, 313, 317, 331, 347, 349, 353, 367, 373, 389, 397, 401
Offset: 1
Keywords
Examples
Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of set systems. 01: {} 02: {{}} 03: {{1}} 04: {{},{}} 05: {{2}} 08: {{},{},{}} 11: {{3}} 13: {{1,2}} 16: {{},{},{},{}} 17: {{4}} 29: {{1,3}} 31: {{5}} 32: {{},{},{},{},{}} 41: {{6}} 43: {{1,4}} 47: {{2,3}} 59: {{7}} 64: {{},{},{},{},{},{}}
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Select[Range[400],Or[#===1,Union[primeMS[#]]==={1},PrimeQ[#]&&SquareFreeQ[PrimePi[#]]]&]
-
PARI
ok(n)={n>>valuation(n,2) == 1 || (isprime(n) && issquarefree(primepi(n)))} \\ Andrew Howroyd, Aug 26 2018
Comments