A302654 Number of minimum total dominating sets in the n-path graph.
0, 1, 2, 1, 1, 4, 3, 1, 2, 9, 4, 1, 3, 16, 5, 1, 4, 25, 6, 1, 5, 36, 7, 1, 6, 49, 8, 1, 7, 64, 9, 1, 8, 81, 10, 1, 9, 100, 11, 1, 10, 121, 12, 1, 11, 144, 13, 1, 12, 169, 14, 1, 13, 196, 15, 1, 14, 225, 16, 1, 15, 256, 17, 1, 16, 289, 18, 1, 17, 324, 19, 1, 18, 361, 20, 1
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Minimum Total Dominating Set.
- Eric Weisstein's World of Mathematics, Path Graph.
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,3,0,0,0,-3,0,0,0,1).
Programs
-
Mathematica
Table[Piecewise[{{1, Mod[n, 4] == 0}, {((n + 2)/4)^2, Mod[n, 4] == 2}, {(n - 1)/4, Mod[n, 4] == 1}, {(n + 5)/4, Mod[n, 4] == 3}}], {n, 20}] Table[((-1)^n (n - 2)^2 + (6 + n)^2 - 2 (n - 2) (n + 6) Cos[n Pi/2] - 48 Sin[n Pi/2])/64, {n, 20}] LinearRecurrence[{0, 0, 0, 3, 0, 0, 0, -3, 0, 0, 0, 1}, {0, 1, 2, 1, 1, 4, 3, 1, 2, 9, 4, 1}, 20]
-
PARI
concat(0, Vec(x^2*(1 + 2*x + x^2 + x^3 + x^4 - 3*x^5 - 2*x^6 - x^7 + x^9 + x^10) / ((1 - x)^3*(1 + x)^3*(1 + x^2)^3) + O(x^70))) \\ Colin Barker, Dec 25 2019
Formula
a(n) = ((-1)^n*(n - 2)^2 + (6 + n)^2 - 2*(n - 2)*(n + 6)*cos(n*Pi/2) - 48*sin(n*Pi/2))/6.
a(n) = 3*a(n-4) - 3*a(n-8) + a(n-12).
G.f.: x^2*(1 + 2*x + x^2 + x^3 + x^4 - 3*x^5 - 2*x^6 - x^7 + x^9 + x^10) / ((1 - x)^3*(1 + x)^3*(1 + x^2)^3). - Colin Barker, Dec 25 2019
E.g.f.: ((12 + x^2)*cos(x) + (20 + 8*x + x^2)*cosh(x) + (5*x - 24)*sin(x) + (16 + 5*x)*sinh(x) - 32)/32. - Stefano Spezia, Jun 10 2025