A302690 a(n) is the smallest integer m such that m*n is a sum of two squares but not one.
2, 1, 6, 2, 1, 3, 14, 1, 2, 1, 22, 6, 1, 7, 3, 2, 1, 1, 38, 1, 42, 11, 46, 3, 2, 1, 6, 14, 1, 3, 62, 1, 66, 1, 7, 2, 1, 19, 3, 1, 1, 21, 86, 22, 1, 23, 94, 6, 2, 1, 3, 1, 1, 3, 11, 7, 114, 1, 118, 3, 1, 31, 14, 2, 1, 33, 134, 1, 138, 7, 142, 1, 1, 1, 6, 38, 154, 3, 158
Offset: 1
Keywords
Programs
-
Maple
A302690 := proc(n) local k ; for k from 1 do if A002828(k*n) = 2 then return k; end if; end do: end proc: seq(A302690(n),n=1..100) ; # R. J. Mathar, Apr 16 2018
-
PARI
a363340(n) = my(r=1); foreach(mattranspose(factor(n)), f, if(f[1]%4==3&&f[2]%2==1, r*=f[1])); r; a(n) = my(p=a363340(n)); if(issquare(p*n), 2*p, p); \\ Peter Schorn, Jul 20 2023
Formula
a(n^2) = 2.
Extensions
Name corrected and more terms added by Michel Marcus, Apr 12 2018
Better name from Peter Schorn, Jul 20 2023
Comments