cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A302734 Number of paths in the n-path complement graph.

Original entry on oeis.org

0, 0, 1, 6, 32, 186, 1245, 9588, 83752, 817980, 8827745, 104277450, 1337781336, 18518728326, 275087536717, 4364152920456, 73637731186160, 1316713607842968, 24869730218182497, 494752411594456110, 10339913354716379440, 226485946787802241650, 5188447062121251600221
Offset: 1

Views

Author

Eric W. Weisstein, Apr 12 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Array[(1/2) Sum[Sum[Sum[(-1)^(k - i) i!*2^j*Binomial[# + i - k, i] Binomial[i, j] Binomial[k - i - 1, k - i - j], {j, 0, k - i}], {i, k}], {k, 2, #}] &, 23] (* Michael De Vlieger, Apr 21 2018 *)
    Table[Sum[(-1)^(k - i) i! 2^j Binomial[n + i - k, i] Binomial[i, j] Binomial[k - i - 1, k - i - j], {k, 2, n}, {i, k}, {j, 0, k - i}]/2, {n, 20}] (* Eric W. Weisstein, Apr 23 2018 *)
  • PARI
    a(n)={sum(k=2, n, sum(i=1, k, sum(j=0, min(i, k-i), (-1)^(k-i)*i!*2^j*binomial(n+i-k, i)*binomial(i, j)*binomial(k-i-1, k-i-j))))/2} \\ Andrew Howroyd, Apr 21 2018

Formula

a(n) = (1/2)*Sum_{k=2..n} Sum_{i=1..k} Sum_{j=0..k-i} (-1)^(k-i)*i!*2^j*binomial(n+i-k, i)*binomial(i, j)*binomial(k-i-1, k-i-j). - Andrew Howroyd, Apr 21 2018
a(n) ~ n! / (2*exp(1)). - Vaclav Kotesovec, Apr 22 2018

Extensions

Terms a(15) and beyond from Andrew Howroyd, Apr 21 2018