A302756 a(n) is the least possible greatest prime in any partition of prime(n) into three primes; n >= 4.
3, 5, 5, 7, 7, 11, 11, 13, 13, 17, 17, 17, 19, 23, 23, 29, 29, 31, 31, 31, 31, 37, 41, 37, 41, 41, 41, 43, 47, 47, 53, 53, 61, 61, 61, 61, 61, 61, 61, 71, 67, 71, 71, 73, 79, 83, 79, 83, 83, 83, 89, 89, 97, 97, 101, 97, 101, 97, 103, 103, 107, 107, 107, 113, 127, 127
Offset: 4
Keywords
Examples
The partition of prime(5)=11 into 3 primes p <= q <= r is 11=3+3+5 and since no smaller value than 5 can be attributed to r, a(5)=5.
Links
- Michel Marcus, Table of n, a(n) for n = 4..5000
- Wikipedia, Goldbach's weak conjecture
Programs
-
PARI
a(n) = {my(pn = prime(n), res = oo); forprime(p=2, pn, forprime(q=p, pn, forprime(r=q, pn, if (p+q+r == pn, res = min(res, r));););); res;} \\ Michel Marcus, May 13 2018
-
PARI
first(n) = {n = prime(n + 3); my(strt = vector(n, i, i), t = 0, res = vector(primepi(n) - 3)); forprime(p = 2, n, forprime(q = p, n - p, forprime(r = q, n - p - q, strt[p + q + r] = min(r, strt[p + q + r])))); forprime(p = 7, n, t++; res[t] = strt[p]); res} \\ David A. Corneth, May 14 2018
Comments