cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A302765 Decimal expansion of constant: B = Sum_{n>=1} (-1)^(n-1) / (2^n - 1)^n.

Original entry on oeis.org

8, 9, 1, 7, 8, 4, 6, 2, 2, 6, 1, 0, 9, 5, 3, 3, 4, 9, 7, 1, 5, 8, 9, 0, 1, 3, 6, 0, 6, 0, 2, 3, 9, 4, 2, 1, 0, 2, 2, 2, 1, 6, 9, 7, 0, 3, 6, 6, 1, 3, 9, 1, 8, 9, 3, 3, 6, 8, 2, 2, 3, 6, 0, 1, 2, 7, 6, 1, 2, 2, 3, 7, 8, 1, 7, 5, 4, 4, 4, 5, 5, 8, 3, 9, 6, 7, 8, 6, 4, 6, 3, 8, 6, 1, 7, 6, 3, 7, 1, 0, 5, 7, 4, 3, 9, 0, 9, 3, 8, 3, 6, 1, 3, 9, 3, 4, 3, 9, 5, 9
Offset: 0

Views

Author

Paul D. Hanna, Apr 12 2018

Keywords

Examples

			Constant B = 0.891784622610953349715890136060239421022216970366139189336822360...
This constant equals the sum of the following infinite series.
(1) B = 1 - 1/3^2 + 1/7^3 - 1/15^4 + 1/31^5 - 1/63^6 + 1/127^7 - 1/255^8 + 1/511^9 - 1/1023^10 + 1/2047^11 - 1/4095^12 + 1/8191^13 - 1/16383^14 + ...
Also,
(2) B = 1/2 + 3/2^4 + 7^2/2^9 + 15^3/2^16 + 31^4/2^25 + 63^5/2^36 + 127^6/2^49 + 255^7/2^64 + 511^8/2^81 + 1023^9/2^100 + 2047^10/2^121 + 4095^11/2^144 + ...
Expressed in terms of powers of 1/2, we have
(3) B = 1/2 + 1/2^2 + 1/2^3 + 0/2^4 + 1/2^5 - 1/2^6 + 1/2^7 - 2/2^8 + 2/2^9 - 3/2^10 + 1/2^11 - 1/2^12 + 1/2^13 - 5/2^14 + 7/2^15 - 7/2^16 + 1/2^17 + 3/2^18 + 1/2^19 - 12/2^20 + 16/2^21 - 9/2^22 + ... + A303506(n)/2^n + ...
DECIMAL EXPANSION TO 1000 DIGITS:
B = 0.89178462261095334971589013606023942102221697036613\
91893368223601276122378175444558396786463861763710\
57439093836139343959699895448987622772561974889829\
69662500641670749267412176492387283639777757763274\
25544373227852142261116843917982062828561973242641\
82725879555976060428390970218640637206146898948643\
76158809108390913335032108295905030664382411547224\
65652844918843557563559576104945928523599994449875\
54216008705234822642417410437080548464100874227218\
61650525099561200582641085028403673931750929494032\
47382019920912650558684222318629979407415580585052\
58521100916256823999312185479604796455256751507361\
67292078514305809228767193192555896703488660216859\
38438297427435171546623099960570301622830302948131\
42393878925766586388132889946469804516455360827301\
15060737460971066848430279446396669771028830058957\
09040428237475226018628287375514768624454713520927\
57806744194504585813229218682951533161650254564160\
40305474360667599580582080941206432281172119508572\
24718465451691587123672187602470833897922105839762...
		

Crossrefs

Cf. A303340 (binary), A300279.

Programs

  • Mathematica
    digits = 120; B = NSum[(-1)^(n-1)/(2^n-1)^n, {n, 1, Infinity}, Method -> "AlternatingSigns", WorkingPrecision -> digits+5]; RealDigits[B, 10, digits][[1]] (* Jean-François Alcover, Apr 25 2018 *)
  • PARI
    suminf(n=1, (-1)^(n-1)/(2^n-1)^n) \\ Michel Marcus, Apr 25 2018

Formula

This constant may be defined by the following expressions.
(1) B = Sum_{n>=1} (-1)^(n-1) / (2^n - 1)^n.
(2) B = Sum_{n>=1} (2^n - 1)^(n-1) / 2^(n^2).
(3) B = Sum_{n>=1} A303506(n)/2^n where A303506(n) = Sum_{d|n} binomial(n/d-1, d-1) * (-1)^(d-1) for n>=1.