cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A302773 Numerators of (3*n + 2)/12.

Original entry on oeis.org

1, 5, 2, 11, 7, 17, 5, 23, 13, 29, 8, 35, 19, 41, 11, 47, 25, 53, 14, 59, 31, 65, 17, 71, 37, 77, 20, 83, 43, 89, 23, 95, 49, 101, 26, 107, 55, 113, 29, 119, 61, 125, 32, 131, 67, 137, 35, 143, 73, 149, 38, 155, 79, 161, 41, 167, 85, 173, 44, 179, 91, 185, 47, 191, 97
Offset: 0

Views

Author

Bruno Berselli, Apr 13 2018

Keywords

Comments

Or numerators of (3*n+2)/4. - Altug Alkan, Apr 17 2018

Crossrefs

Cf. A060819: numerators of n/4, with n > 0.
Cf. A176672: numerators of (3*n + 1)/12.
First bisection is A165355; second bisection is A016969.

Programs

  • GAP
    List([0..70], n -> NumeratorRat((3*n+2)/12));
    
  • Magma
    [Numerator((3*n+2)/12): n in [0..70]];
  • Mathematica
    Table[Numerator[(3 n + 2)/12], {n, 0, 70}]
    LinearRecurrence[{0,0,0,2,0,0,0,-1},{1,5,2,11,7,17,5,23},80] (* Harvey P. Dale, Feb 04 2021 *)
  • PARI
    vector(70, n, n--; numerator((3*n+2)/12))
    
  • PARI
    Vec((1 + 5*x + 2*x^2 + 11*x^3 + 5*x^4 + 7*x^5 + x^6 + x^7)/((1 - x)^2*(1 + x)^2*(1 + x^2)^2) + O(x^60)) \\ Colin Barker, Apr 16 2018
    
  • Sage
    [numerator((3*n+2)/12) for n in (0..70)]
    

Formula

G.f.: (1 + 5*x + 2*x^2 + 11*x^3 + 5*x^4 + 7*x^5 + x^6 + x^7)/((1 - x)^2*(1 + x)^2*(1 + x^2)^2).
a(n) = 2*a(n-4) - a(n-8).
a(n) = (3*n + 2)*(((-1)^n + 1)*(i^(n*(n+1)) - 5) + 16)/16, where i = sqrt(-1).
a(n) = A016789(n)/A109008(n+2).