A302789 Number of times the largest Fermi-Dirac factor of n is the largest Fermi-Dirac factor for numbers <= n; a(1) = 1.
1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 3, 1, 1, 2, 1, 4, 3, 2, 1, 4, 1, 2, 3, 4, 1, 5, 1, 2, 3, 2, 5, 4, 1, 2, 3, 6, 1, 6, 1, 4, 5, 2, 1, 3, 1, 2, 3, 4, 1, 6, 5, 7, 3, 2, 1, 7, 1, 2, 7, 4, 5, 6, 1, 4, 3, 8, 1, 8, 1, 2, 3, 4, 7, 6, 1, 5, 1, 2, 1, 9, 5, 2, 3, 8, 1, 9, 7, 4, 3, 2, 5, 6, 1, 2, 9, 4, 1, 6, 1, 8, 10
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Crossrefs
Programs
-
Mathematica
f[n_] := Max@Table[{p, e} = pe; p^(2^(Length[IntegerDigits[e, 2]]-1)), {pe, FactorInteger[n]}]; b[_] = 1; a[n_] := a[n] = With[{t = f[n]}, b[t]++]; Array[a, 105] (* Jean-François Alcover, Dec 18 2021 *)
-
PARI
up_to = 65537; ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; }; ispow2(n) = (n && !bitand(n, n-1)); A223491(n) = if(1==n,n,fordiv(n, d, if(ispow2(isprimepower(n/d)), return(n/d)))); v302789 = ordinal_transform(vector(up_to,n,A223491(n))); A302789(n) = v302789[n];
Comments